Welcome to your CDP Water Security Questionnaire 2023

W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

Occidental Petroleum Corporation (Oxy) is an international energy company with assets in the United States, Middle East, Africa and Latin America. Founded in 1920, Oxy's success is built on technical expertise, business acumen, strong partnerships, and our proven ability to deliver lasting results. We are one of the largest oil producers in the U.S., including a leading producer in the Permian and Denver-Julesburg (DJ) basins, and offshore Gulf of Mexico. Oxy’s integrated business model combines best-in-class assets and industry leadership to advance a lower-carbon future as the first major U.S. oil and gas company to establish net-zero greenhouse gas (GHG) emission goals for Scopes 1, 2 and 3, including the global use of our products. Our midstream and marketing segment purchases, markets, gathers, processes, transports, and stores oil, condensate, natural gas liquids, natural gas, CO2, and power. Our chemical subsidiary, Occidental Chemical Corporation (OxyChem), is a leading manufacturer of PVC resins, vinyls, chlorine, and caustic soda – key building blocks to life-enhancing products such as pharmaceuticals, water treatment chemicals, building materials and plastics. Our Oxy Low Carbon Ventures (OLCV) subsidiary is advancing leading-edge technologies and business solutions that economically grow our business while reducing emissions.

We are committed to being a Partner of Choice® everywhere we operate. At our business locations, we follow established procedures to gain an understanding of how Oxy’s presence affects the surrounding area and the challenges faced by local communities. By investing in programs and initiatives that manage our operational profile and address key stakeholder interests, Oxy strengthens relationships with communities and creates shared value for stakeholders and our business.

Oxy is dedicated to advancing a lower-carbon world, respecting the environment, operating safely and upholding the highest standards of ethical business practices. Oxy applies a robust environmental risk management approach and operational practices to increase energy efficiency and reduce emissions of GHGs and other compounds, even while sustaining our production and resource base. The production of oil and gas, electricity and chemicals requires water, and Oxy understands the importance of managing water resources responsibly. Oxy's
water management program is designed to conserve and protect water resources in communities where we operate by optimizing the use of lower-quality brackish water, the recycled produced and process water from our operations and limiting the use of freshwater in our operations where feasible.

Oxy’s water stewardship program, including use of technology for recycling and reuse of water combined with principles of conservation, is part of our demonstrated support of and alignment with the United Nations Sustainable Development Goals (SDGs), in particular SDGs 6 (Clean Water and Sanitation), 8 (Decent Work and Economic Growth), 9 (Industry, Innovation and Infrastructure), 12 (Responsible Consumption and Production), 13 (Climate Action), 14 (Life Below Water), and 15 (Life on Land). The SDGs give Oxy a complementary framework to use as we communicate and partner with host governments and communities.

Our updated HSE and Sustainability Principles, approved by our Board of Directors in 2022, our OMS and the ongoing work of our Water Strategy and Technology Group further align our water stewardship strategies with the Ipieca’s Water Management Framework and UN SDG 6 and address collaboration around integrated water resources management; local participation in the collective management of water, particularly in areas of water scarcity; improvement of water quality; and recycling and reuse of water, where feasible, to reduce usage of freshwater.

Lastly, Oxy's reporting process and performance indicators are informed by IPIECA, SASB, the ACC’s Responsible Care® initiative, and the Stakeholder Capitalism Metrics of the World Economic Forum.

In 2022, Oxy's total estimated water withdrawals combining both fresh and non-fresh water, including produced water, decreased 9% from 2021 volumes despite higher field activity related to increased oil and gas demand. Specifically, in 2022 Oxy’s total freshwater withdrawal decreased 16% and total non-fresh water withdrawal decreased 7% as compared to 2021 volumes.

W-CH0.1a

(W-CH0.1a) Which activities in the chemical sector does your organization engage in?

- Bulk organic chemicals
- Bulk inorganic chemicals

W-OG0.1a

(W-OG0.1a) Which business divisions in the oil & gas sector apply to your organization?

- Upstream
- Chemicals

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.
W0.3

(W0.3) Select the countries/areas in which you operate.
- Bolivia (Plurinational State of)
- Canada
- Chile
- Oman
- United Arab Emirates
- United States of America

W0.4

(W0.4) Select the currency used for all financial information disclosed throughout your response.
- USD

W0.5

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.
- Companies, entities or groups over which operational control is exercised

W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?
- Yes

W0.6a

(W0.6a) Please report the exclusions.

<table>
<thead>
<tr>
<th>Exclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water use/discharge at non-operated assets and facilities.</td>
<td>Occidental does not exercise operational control over certain assets and Joint Ventures (JVs).</td>
</tr>
</tbody>
</table>

W0.7

(W0.7) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

<table>
<thead>
<tr>
<th>Indicate whether you are able to provide a unique identifier for your organization.</th>
<th>Provide your unique identifier</th>
</tr>
</thead>
</table>
W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient amounts of good quality freshwater available for use</td>
<td>Neutral</td>
<td>Not very important</td>
</tr>
</tbody>
</table>

"Sufficient amounts of good quality freshwater available for use" is rated as neutral for Oxy’s oil and gas operations, which is our main business sector, and rated as vital for our OxyChem subsidiary. In 2022, 10.6% of Oxy’s total freshwater volume was withdrawn by our oil and gas operations and 89.4% was withdrawn by OxyChem. Most of our oil and gas operations do not require freshwater as they generate significant quantities of produced water (i.e., saline water from hydrocarbon reservoirs). This produced water would not be generated and available for use as a resource without oil and gas production. Since recycled produced water is often sufficient to meet the most of our operational needs, produced water helps us to avoid competing for freshwater resources with municipal, agricultural or industrial users or using freshwater needed to sustain riparian habitat. In 2022 we continued to increase treatment, recycling and use of recycled produced water while collaborating with other operators and experienced water service contractors in the Midland and the Delaware Basins. In addition, we continued to operate our DJ Basin’s Aggregate Recycling Facility (ARF), which is processing liquid and slurry Exploration and Production (E&P) waste. In 2022 this facility set an annual recycling record by processing 889,076 barrels of liquid and slurry E&P waste resulting in 696,480 barrels of water being recovered and recycled to offset freshwater needs during well completion operations. In our Delaware Basin operations, we did not withdraw
any water from freshwater sources in 2022. All sourced water was non-fresh, with 90% of it being produced water. Similarly, the Midland Basin operations were fully sourced with non-fresh water with 67% of it being produced water. OxyChem uses freshwater for production and cooling purposes, in addition to producing electricity. Freshwater is also used by our workers on an indirect basis for cleaning and drinking purposes.

| Sufficient amounts of recycled, brackish and/or produced water available for use | Important | Not very important | With respect to direct use, Oxy’s oil and gas operations increasingly replace use of freshwater with brackish, non-potable produced water. In 2022 our domestic oil and gas operations withdrew only 5% of water from freshwater sources. 95% of the total water withdrawn by Oxy US oil and gas operations came from non-fresh sources, out of which 94% was produced water. In our Permian Basin, oil and gas operations freshwater withdrawal was even lower and amounted to only 4%. Of the total withdrawn water, 96% came from non-fresh sources, out of which 93% was produced water. In Midland Basin, 67% of total non-fresh water withdrawal was produced water. Our approach of maximum utilization of produced water resulted in 62% reduction of non-fresh water withdrawal from groundwater and 36% reduction in obtaining water from third party sources, compared to 2021. In addition, zero non-fresh water was withdrawn from the surface water sources. Furthermore, in Midland Basin thanks to the new produced water recycling facility, zero water disposal occurred at South Curtis Ranch for most of 2022. Similarly, in Delaware Basin’ operations we maximized use of produced water. In New Mexico, 94% of our total non-fresh water withdrawn was produced water. Furthermore, 69% of our fracturing demand in New Mexico was met by recycled produced water, both Oxy own and obtained from third party. In DJ Basin we continued to operate the ARF that recovered 696,480 barrels of recycled water, which was used to offset freshwater needs during well completion operations. In 2022, our Oman operations treated and recycled 74% of all
produced water to generate steam for enhanced oil recovery. At OxyChem, the manufacture of chlorine and caustic soda involves the purchase and processing of brine (saltwater) streams. At OxyChem we employ various process operations to help reduce water usage such as the reuse of steam condensate, wastewater recovery and routing of water blowdown between cooling towers.

W1.2

(W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>Water withdrawals – total volumes</th>
<th>% of sites/facilities/operations</th>
<th>Frequency of measurement</th>
<th>Method of measurement</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100%</td>
<td>Other, please specify</td>
<td>Metering, Estimation</td>
<td>We measure water withdrawals at all facilities. The method of measurement varies depending on the type of operations. We measure water withdrawals at all facilities. The method of measurement varies depending on the type of operations. Thus, all OxyChem facilities are equipped with meters to measure withdrawals on a continuous basis. For offshore operations the method of measurement is</td>
</tr>
</tbody>
</table>
| Water withdrawals – volumes by source | 100% | Other, please specify | Metering, Estimation | We measure water withdrawals for each source (e.g., surface, groundwater, aquifers, produced water, third party sources).
Depending on the type of operations water withdrawals are measured on a continuous, daily, weekly, or monthly basis. |
| Produced water associated with your oil & gas sector activities - total volumes [only oil and gas sector] | 100% | Other, please specify | Metering, Estimation | The frequency of measurement can vary from continuous, daily to monthly basis, when we utilize Oxy or third-party receipts for tracked water.
Depending on the source of produced water – Oxy own or obtained from the third party, the volumes are measured on a continuous, daily, weekly, or monthly basis. |
<table>
<thead>
<tr>
<th>Water withdrawals quality</th>
<th>26-50</th>
<th>Other, please specify</th>
<th>Automatic water samplers, Laboratory testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Depending on the type of operations, the water withdrawals quality is monitored on a daily, weekly, monthly, or less frequent basis depending on the parameter, source water, and manufacturing process involved. Certain withdrawals are not monitored.</td>
<td>At OxyChem each facility has unique monitoring requirements due to the variety of water quality inherent to the source waters and the sensitivity of the manufacturing processes. 100% of water withdrawals at OxyChem facilities are monitored for quality. For onshore operations, water withdrawal quality can be monitored on a daily, weekly, monthly, or less frequent basis depending on the parameter. In some jurisdictions, water withdrawal quality is determined for internal use only, e.g., for new water bodies as source water. Water quality parameters monitored include TDS, pH, temperature, residual chlorine, cations, and</td>
</tr>
</tbody>
</table>
anions. In cases when water is sourced from third party, e.g., used for completions operations, the water is being sampled to determine its quality to make sure its composition is suitable before each fracking. Additional water quality monitoring is completed at Public and Potable Water Systems. For offshore operations, seawater quality is not monitored.

<table>
<thead>
<tr>
<th>Water discharges – total volumes</th>
<th>100%</th>
<th>Other, please specify</th>
<th>Metering, Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Depending on the type of operations water discharges are measured on a continuous, daily, weekly, or monthly basis.</td>
<td>We measure water discharges at all facilities. Most of our OxyChem facilities are equipped with the metering systems that measure discharge volumes continuously. For onshore operations we use both, meters and estimation method (tracked water to be injected or discharged) to</td>
</tr>
<tr>
<td>Water discharges – volumes by destination</td>
<td>100%</td>
<td>Other, please specify</td>
<td>Metering, Estimation</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depending on the type of operations water discharges are measured on a continuous, daily, weekly, or monthly basis.</td>
<td>We measure water discharges by destination at all facilities. The method of measurement varies depending on the type of operations. Thus, all OxyChem facilities are equipped with meters to measure discharges on a continuous basis. Offshore operations water discharges are measured by meters on a continuous basis. For onshore oil and gas operations, the method of measurement can be either meter- or estimation based (e.g., number of water tracks). The frequency of measurement can vary from</td>
</tr>
<tr>
<td>Water discharges – volumes by treatment method</td>
<td>100%</td>
<td>Other, please specify</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>Daily to monthly basis when we utilize Oxy or third-party receipts for tracked water.</td>
<td></td>
<td>Depending on the type of operations water discharges are measured on a continuous, daily, weekly, or monthly basis.</td>
<td></td>
</tr>
<tr>
<td>Water discharge quality – by standard effluent parameters</td>
<td>76-99</td>
<td>Other, please specify</td>
<td></td>
</tr>
<tr>
<td>Automatic water samplers, Laboratory testing</td>
<td></td>
<td>Depending on the type of operations water discharges are measured on a continuous, daily, weekly, or monthly basis.</td>
<td></td>
</tr>
<tr>
<td>For OxyChem operations we measure the flow of all our discharges after treatment. In our offshore operations we conduct water treatment and monitor Oil & Grease and/or toxicity for all discharges. Our onshore operations are not required to treat or monitor water discharge quality.</td>
<td></td>
<td>For OxyChem operations we monitor water discharge quality by standard effluent parameters at every site. Certain parameters such as pH are monitored continuously, and samples are collected on a periodic basis to analyse a variety of other</td>
<td></td>
</tr>
</tbody>
</table>
parameters as required in regulations or water discharge site-specific permits. Depending on the facility, parameters may include metals, BOD5, TRC, Enterococci, TSS, TDS, TOC, Oil and Grease, VOCs, SVOCs, Dioxin, PCBs, toxicity and others.

In our offshore operations we conduct water treatment and monitor Oil & Grease and/or Toxicity for all discharges. Our onshore operations are not required to monitor discharge quality.

<p>| Water discharge quality – emissions to water (nitrates, phosphates, pesticides, and/or other priority substances) | Not monitored | We do not monitor water discharge quality for these parameters. |
| Water discharge quality – temperature | 76-99 | Other, please specify Depending on the type of | In-line temperature sensors, Estimation |
| | | In our OxyChem operations a significant majority of our |</p>
<table>
<thead>
<tr>
<th>Water consumption – total volume</th>
<th>100%</th>
<th>Other, please specify</th>
<th>Estimation</th>
<th>Total volumes of water consumption are calculated based on meters data and using information obtained from Oxy or third-party receipts in cases where water is tracked from a source to our facilities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water recycled/reused</td>
<td>51-75</td>
<td>Other, please specify</td>
<td>Metering, Estimation</td>
<td>In offshore and onshore oil and gas operations volumes of reused and recycled water are measured and calculated on a daily, weekly, or monthly basis. In our OxyChem operations we currently don’t</td>
</tr>
</tbody>
</table>
quantify the total volume of recycled water. We are determining ways and engineering solutions to gather this data through updated engineering estimates and more detailed facility water balances.

The provision of fully-functioning, safely managed WASH services to all workers 100% Monthly Water sampling and testing

This water quality monitoring is completed at Public Water Systems and Potable Water Systems at various frequencies to ensure EPA Primary Drinking Water Standards are met.

W1.2b

(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are they forecasted to change?

<table>
<thead>
<tr>
<th>Volume (megaliters/ year)</th>
<th>Comparision with previous reporting year</th>
<th>Primary reason for comparison with previous reporting year</th>
<th>Five-year forecast</th>
<th>Primary reason for forecast</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawal s</td>
<td>451,193</td>
<td>About the same</td>
<td>About the same</td>
<td>Investment in water-smart technology/proc ess</td>
<td>In 2022, Oxy's total estimated water withdrawals combining both fresh</td>
</tr>
</tbody>
</table>
and non-fresh water, including produced water, decreased 6% (categorized as “About the Same” when the change is 25% less to 25% more) from 2021 values even with higher field activity due to increased oil and natural gas demand. Our global oil and gas operations withdrew only 4% of water from freshwater sources; the remainder came from non-fresh sources, primarily produced water. Due to our continuous water stewardship efforts, in 2022 Oxy’s freshwater withdrawals decreased
While non-freshwater withdrawals decreased 2% as compared to 2021 levels, the overall water withdrawal decrease can be explained by the following factors: 1) continuous investment and expansion of produced water recycling capabilities in our oil and gas processes; 2) ongoing optimization of OxyChem’s technological processes, aimed at process water reuse and recycling; and 3) closure of OxyChem’s Niagara Falls production.
Water withdrawal from fresh and non-fresh surface and ground water for oil & gas operations and OxyChem is generally dependent on (1) activity levels such as drilling, completions and plant operating rates, and (2) level of reuse or recycling of produced or process water. Assuming flat activity levels consistent with 2022 over the next five years, water withdrawals from those sources for the oil and gas and chemical businesses would be expected to decline.
moderately due to our plans for increasing reuse and recycling of produced and process water. Oxy is advancing our Net-Zero Strategy with low carbon ventures which will have separate water needs. As we design and build those businesses and facilities, we will assess their water needs and expect to apply water conservation, treatment, and recycling measures we are currently applying in our operations, but we believe it would currently be too speculative to predict the five-year
<table>
<thead>
<tr>
<th>Total discharges</th>
<th>152,422</th>
<th>About the same</th>
<th>Facility closure</th>
<th>About the same</th>
<th>Investment in water-smart technology/proc ess</th>
</tr>
</thead>
</table>
| water demand from those new ventures. In 2022, Oxy’s total estimated water discharges combining both fresh and non-fresh water, including produced water, decreased 19% (categorized as “About the Same” when the change is 25% less to 25% more) from 2021 values even with higher field activity due to increased oil and natural gas demand. In 2022 our oil and gas operations’ freshwater discharge increased significantly due to drilling operations in DJ Basin.
and Bolivia, where produced water quality is classified as fresh water.

In addition, our DJ Basin operations fulfilled requirements of the State of Colorado to recharge river fed aquifers under the augmentation of water usage to maintain the Colorado River’s water balance.

In 2022, our company wide non-fresh water discharge decreased 2%, specifically in OxyChem, Oman, GOM and the DJ Basin. The total discharge decrease can be explained by the following factors: 1)
continuous investment and expansion of produced water recycling capabilities of Oxy’s oil and gas operations;

2) ongoing optimization of OxyChem’s technological processes, aimed at process water reuse and recycling, which led to decrease of water discharges and

3) closure of OxyChem’s Niagara Falls facility.

Assuming flat activity levels consistent with 2022 over the next five years, water discharges from the oil and gas and chemical businesses would be expected to
decline moderately due to our plans for increasing reuse and recycling of produced and process water.

Oxy is advancing our Net-Zero Strategy with low carbon ventures which will have separate water needs. As we design and build those businesses and facilities, we will assess their water needs and expect to apply water conservation, treatment, and recycling measures we are currently applying in our operations, but we believe it would currently be too
speculative to predict the five-year water demand from those new ventures.

<table>
<thead>
<tr>
<th>Total consumption</th>
<th>298,771</th>
<th>About the same</th>
<th>Investment in water-smart technology/processing</th>
<th>About the same</th>
<th>Investment in water-smart technology/processing</th>
</tr>
</thead>
</table>

In 2022, Oxy’s total estimated water consumption increased 2% (categorized as “About the Same” when the change is 25% less to 25% more) with a higher production level due to increased oil and natural gas demand.

Despite higher field activity and increased production in oil and gas operations, our total withdrawals decreased by 6% and our total discharges decreased by 19%, largely due to our
continued investments in produced water recycling facilities and technology advancements.

Water withdrawal from fresh and non-fresh surface and ground water for oil and gas operations and OxyChem is generally dependent on (1) activity levels such as drilling, completions and plant operating rates, and (2) level of reuse or recycling of produced or process water.

Assuming flat activity levels consistent with 2022 over the next five years, water consumption
for the oil and gas and chemical businesses would be expected to decline moderately due to our plans for increasing reuse and recycling of produced and process water. On a separate track, Oxy is advancing our Net-Zero Strategy with multiple low carbon ventures which will have separate water needs. As we design and build those businesses and facilities with our partners, we will assess their water needs and expect to apply many of the water conservation, treatment and recycling measures we are
(W-OG1.2c) In your oil & gas sector operations, what are the total volumes of water withdrawn, discharged, and consumed (by business division), how do they compare to the previous reporting year, and how are they forecasted to change?

<table>
<thead>
<tr>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Primary reason for comparison with previous reporting year</th>
<th>Five-year forecast</th>
<th>Primary reason for forecast</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals - upstream</td>
<td>330,088</td>
<td>About the same</td>
<td>Investment in water-smart technology/processes</td>
<td>About the same</td>
<td>Increase/decrease in business activity</td>
</tr>
</tbody>
</table>
change is 25% less to 25% more) while our production rate increased 2% compared to 2021 levels. This was largely due to our investment in integrated water recycling facilities in our operational areas. Our global oil and gas operations withdrew only 4% of water from freshwater sources; the remainder came from non-fresh sources, primarily produced water. Throughout our global operations, Oxy strives to increase the rate of recycling and reuse
of water, which decreases our freshwater withdrawals, and also the need for transportation of water and disposal of surplus produced water.

<table>
<thead>
<tr>
<th>Total discharges – upstream</th>
<th>71,199</th>
<th>About the same</th>
<th>Investment in water-smart technology/process</th>
<th>About the same</th>
<th>Investment in water-smart technology/process</th>
</tr>
</thead>
</table>

In 2022, Oxy’s total estimated water discharges by our upstream operations decreased 19% (categorized as “About the Same” when the change is 25% less to 25% more) while our production rate increased 2% as compared to 2021. This resulted from our previous investments in
integrated water recycling facilities in Delaware Basin, New Mexico and the South Curtis Ranch facility in Midland Basin, built in 2016 and 2021 respectively.

Oxy strives to increase the rate of recycling and reuse of water, including the reuse of produced water via produced water sharing practices and collaborating with other operators and water service companies. In our Delaware Basin, New Mexico and in our Midland operations, we offer
excess of our produced water to other operators in the area. In field locations where our own produced water is not available at the time of an operational need, we obtain new raw, treated or recycled produced water from third party sources. Thus, in 2022 we obtained 1,446 megaliters of produced water from third party sources. This water sharing approach helps us and other operators to decrease withdrawals of fresh or non-freshwater and
In the future, where we are able to enhance our produced water recycling capabilities and where we may have surplus produced water, we will strive to increase water sharing, which will be mutually beneficial for Oxy and other operators withdrawals of fresh and non-fresh water.

<table>
<thead>
<tr>
<th>Description</th>
<th>2023</th>
<th>Change in 2023</th>
<th>2022</th>
<th>Change in 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total consumption – upstream</td>
<td>258,889</td>
<td>About the same</td>
<td></td>
<td>About the same</td>
</tr>
<tr>
<td>Investment in water-smart technology/process</td>
<td></td>
<td></td>
<td>About the same</td>
<td>Investment in water-smart technology/process</td>
</tr>
<tr>
<td>In 2022, Oxy’s total estimated water consumption by our upstream operations increased by 2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In 2022, OxyChem’s total estimated water withdrawals decreased 13% (categorized as “About the Same” when the change is 25% less to 25% more). This decrease can be explained by the following factors: 1) Continuous optimization of technologic

<table>
<thead>
<tr>
<th>Total withdrawal s – chemicals</th>
<th>121,104</th>
<th>About the same</th>
<th>Facility closure</th>
<th>About the same</th>
<th>Investment in water-smart technology/process</th>
</tr>
</thead>
</table>

(categorized as “About the Same” when the change is 25% less to 25% more) while our field activities increased due to high demand for oil and natural gas post pandemic.
processes, aimed at process water reuse and recycling and 2) Closure of OxyChem’s Niagara Falls facility. Throughout our OxyChem facilities we have process operations that reuse steam condensate, recover wastewater, route the water blowdown between cooling towers, as well as other water stewardship practices that reuse water. By reusing and recycling process water flows we are decreasing water withdrawals by our chemical
Water withdrawal from fresh and non-fresh surface and ground water for oil & gas operations and OxyChem is generally dependent on (1) activity levels such as drilling, completions and plant operating rates, and (2) level of reuse or recycling of produced or process water. Assuming flat activity levels consistent with 2022 over the next five years, water withdrawals from those sources for the oil and gas and chemical businesses operations.
would be expected to decline moderately due to our plans for increasing reuse and recycling of produced and process water.

On a separate track Oxy is advancing our Net-Zero Strategy with multiple low carbon ventures which will have separate water needs. As we design and build those businesses and facilities with our partners, we will assess their water needs and expect to apply many of the water conservati
n, treatment and recycling measures we are currently applying in our oil and gas and chemical businesses, but we believe it would currently be too speculative to predict the five-year water demand from those new ventures.

<table>
<thead>
<tr>
<th>Total discharges – chemicals</th>
<th>81,223</th>
<th>About the same</th>
<th>Facility closure</th>
<th>About the same</th>
<th>Investment in water-smart technology/process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In 2022, OxyChem’s total estimated water discharges decreased 19% (categorized as “About the Same” when the change is 25% less to 25% more). This decrease can be explained by the following</td>
</tr>
</tbody>
</table>
factors: 1) Continuous optimization of technological processes, aimed at process water reuse and recycling and 2) Closure of OxyChem’s Niagara Falls facility. Throughout our OxyChem facilities we have process operations that reuse steam condensate, recover wastewater, route the water blowdown between cooling towers, etc. By reusing and recycling process water flows we are decreasing discharges from our chemical
operations.

Water withdrawal from fresh and non-fresh surface and ground water for oil and gas operations and OxyChem is generally dependent on (1) activity levels such as drilling, completions and plant operating rates, and (2) level of reuse or recycling of produced or process water. Assuming flat activity levels consistent with 2022 over the next five years, water discharges for the oil and gas and chemical businesses would be
expected to decline moderately due to our plans for increasing reuse and recycling of produced and process water.

On a separate track Oxy is advancing our Net-Zero Strategy with multiple low carbon ventures which will have separate water needs. As we design and build those businesses and facilities with our partners, we will assess their water needs and expect to apply many of the water conservation, treatment
and recycling measures we are currently applying in our oil & gas and chemical businesses, but we believe it would currently be too speculative to predict the five-year water discharges from those new ventures.

<table>
<thead>
<tr>
<th>Total consumption – chemicals</th>
<th>39,882</th>
<th>About the same</th>
<th>Increase/decrease in business activity</th>
<th>About the same</th>
<th>Investment in water-smart technology/process</th>
</tr>
</thead>
</table>

In 2022, OxyChem’s total estimated water consumption increased 2% (categorized as “About the Same” when the change is 25% less to 25% more). The slight increase in water consumption was due...
to increase of cogeneratio n unit operation time (which generates electricity that we use to power our Taft, Louisiana facility and supply power to the grid) in 2022, compared to extended down-time in 2021.

Water withdrawal from fresh and non-fresh surface and ground water for oil and gas operations and OxyChem is generally dependent on (1) activity levels such as drilling, completions and plant operating rates, and (2) level of reuse or
recycling of produced or process water. Assuming flat activity levels consistent with 2022 over the next five years, water consumption for the oil and gas and chemical businesses would be expected to decline moderately due to our increasing plans for reuse and recycling of produced and process water. On a separate track, Oxy is advancing our Net-Zero Strategy with multiple low carbon ventures which will have...
separate water needs. As we design and build those businesses and facilities with our partners, we will assess their water needs and expect to apply many of the water conservation, treatment and recycling measures we are currently applying in our oil and gas and chemical businesses, but we believe it would currently be too speculative to predict the five-year water consumption from those new ventures.
W1.2d

(W1.2d) Indicate whether water is withdrawn from areas with water stress, provide the proportion, how it compares with the previous reporting year, and how it is forecasted to change.

<table>
<thead>
<tr>
<th>Row</th>
<th>Withdrawals are from areas with water stress</th>
<th>% withdrawn from areas with water stress</th>
<th>Comparison with previous reporting year</th>
<th>Primary reason for comparison with previous reporting year</th>
<th>Five-year forecast</th>
<th>Primary reason for forecast</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>1-10</td>
<td>About the same</td>
<td>Investment in water-smart technology/process</td>
<td>About the same</td>
<td>Investment in water-smart technology/process</td>
<td>WRI Aqueduct</td>
<td>Oxy's oil and gas water management program is designed to conserve and protect water resources in communities where we operate by optimizing the use of lower-quality produced water, the recycling of water and limiting the use of freshwater withdrawals. Oxy works to ensure our water use does not compete</td>
</tr>
</tbody>
</table>
with municipal, agricultural, or industrial users of freshwater resources, or water needed for riparian habitat. Accordingly, we are reporting the percentage of our freshwater usage that comes from water-stressed areas in the Permian Basin and Oman. Oxy’s U.S. operations are concentrated in the Permian Basin, considered a historically water stressed region in West Texas and New Mexico. Our high degree of recycling
and reuse of produced water in the Permian alleviates stress to regional freshwater supplies. Focusing on only our make-up water in the Permian, without regard to our recycling and reuse, 96% is from non-fresh sources, with only 4% from freshwater sources (primarily for use in EOR gas plants and certain drilling, completion and well servicing activities). Oxy’s operations both consume and generate water and most of our...
operational needs in the Permian are met by recycling or reusing produced water, supplemented by other non-freshwater sources. Additionally, we have implemented a variety of water stewardship initiatives and investments to reduce our overall water footprint. In all operating areas we apply our Operational Management System (OMS), and in operating areas subject to water stress we also use other industry water management tools,
like the World Resources Institute’s Aqueduct.

Oxy considers the longer-term patterns of integrated water resources management, regenerative capacity of ground water and aquifers, population growth/dem and shifts, and the potential for weather-related impacts in evaluating and mitigating the effects of water risks on key operations and the safety and well-being of employees and contractors. Evaluating a new site
or asset involves evaluating legal and regulatory issues and hydrological yield in terms of the reliability of sources and proximity of other water users during exploration and production activities. Our analysis of water-related risks includes an information-gathering process, environmental due diligence, participation in industry association work groups (for example, the IPIECA Water Working Group and the American
Part of Oxy's assessment involves the identification of water-related risks and impacts as well as opportunities. Oxy uses various approaches to assess risks and to evaluate water use and discharge at key operations, taking into account factors such as: • Physical and
| climatic characteristics • Future physical supply and disposal reliability • Population growth and industrial growth trends • Affected ecosystems • Regulatory issues • Social context. Oxy’s water stewardship program is part of our demonstrated support of and alignment with the United Nations SDGs, in particular SDGs 6, 8, 9, 12, 13, 14 and 15. The SDGs give Oxy a complementary framework to use as we communicate and partner with |
host
governments and communities.

Our updated HSE and Sustainability Principles, approved by our Board of Directors in 2022, our OMS and the ongoing work of our Water Strategy and Technology Group further align our water stewardship strategies with the Ipieca’s Water Management Framework and UN SDG 6 and address collaboration around integrated water resources management; local
participation in the collective management of water, particularly in areas of water scarcity; improvement of water quality; and recycling and reuse of water, where feasible, to reduce usage of freshwater.

Water withdrawal from fresh and non-fresh surface and ground water for oil & gas operations and OxyChem is generally dependent on (1) activity levels such as drilling, completions and plant operating rates, and (2) level of reuse or recycling of
produced or process water. Assuming flat activity levels consistent with 2022 over the next 5 years, water withdrawals from those sources for the oil & gas and chemical businesses would be expected to decline [moderately] due to our plans for increasing reuse and recycling of produced and process water. On a separate track Oxy is advancing our Net-Zero Strategy with multiple low carbon ventures which will have separate water
needs. As we design and build those businesses and facilities with our partners, we will assess their water needs and expect to apply many of the water conservation, treatment and recycling measures we are currently applying in our oil & gas and chemical businesses, but we believe it would currently be too speculative to predict the 5-year water demand from those new ventures.
W1.2h

(W1.2h) *Provide total water withdrawal data by source.*

<table>
<thead>
<tr>
<th>Source</th>
<th>Relevance</th>
<th>Volume (megalliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Primary reason for comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers, and lakes</td>
<td>Relevant</td>
<td>73,311</td>
<td>Lower</td>
<td>Investment in water-smart technology/process</td>
<td>In 2022, Oxy’s total estimated fresh surface water withdrawals, decreased 35% (categorized as “Lower” when the change is 25%-50% less) from 2021 values. The overall water withdrawal decrease can be explained by the following factors: 1) continuous investment and expansion of produced water recycling capabilities in our oil and gas operations; 2) ongoing optimization of OxyChem’s technological processes, aimed at process water reuse and recycling, which led to decreased water withdrawals and 3) closure of</td>
</tr>
</tbody>
</table>

OxyChem’s Niagara Falls facility. Water withdrawal from fresh and non-fresh surface and ground water for oil & gas operations and OxyChem is generally dependent on (1) activity levels such as drilling, completions and plant operating rates, and (2) level of reuse or recycling of produced or process water.

<table>
<thead>
<tr>
<th>Brackish surface water/Seawater</th>
<th>Relevant</th>
<th>215</th>
<th>Much lower</th>
<th>Investment in water-smart technology/ process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In 2022, Oxy’s total estimated brackish surface water/seawater withdrawals, decreased 99% (categorized as “Much Lower” when the change is greater than 50%) from 2021 values. The overall water withdrawal decrease can be explained by the following factors: 1) continuous investment and expansion of produced water recycling capabilities in our oil and gas...</td>
</tr>
</tbody>
</table>
operations; 2) ongoing optimization of OxyChem’s technological processes, aimed at process water reuse and recycling, which led to decreased water withdrawals and 3) closure of OxyChem’s Niagara Falls facility. Water withdrawal from fresh and non-fresh surface and ground water for oil & gas operations and OxyChem is generally dependent on (1) activity levels such as drilling, completions and plant operating rates, and (2) level of reuse or recycling of produced or process water. In addition, at our offshore operations in GOM, we did not utilize seawater injection in 2022, as some maintenance work was being completed on the system.
<table>
<thead>
<tr>
<th>Groundwater – renewable</th>
<th>Relevant</th>
<th>35,593</th>
<th>About the same</th>
<th>Investment in water-smart technology/technology/process</th>
</tr>
</thead>
</table>

In 2022, Oxy’s total estimated groundwater – renewable withdrawals decreased 9% (categorized as “About the same” when the change is 25% less to 25% more) from 2021 values. The overall water withdrawal decrease can be explained by the following factors: 1) continuous investment and expansion of produced water recycling capabilities in our oil and gas operations; 2) ongoing optimization of OxyChem’s technological processes, aimed at process water reuse and recycling, which led to decreased water withdrawals and 3) closure of OxyChem’s Niagara Falls facility. Water withdrawal from fresh and non-fresh surface and ground water for oil & gas operations and
OxyChem is generally dependent on (1) activity levels such as drilling, completions and plant operating rates, and (2) level of reuse or recycling of produced or process water.

| Groundwater – non-renewable | Not relevant | | | Not applicable to our operations |
|------------------------------|-------------|-----------------------------|-----------------------------|
| Produced/Entrained water | Relevant | 309,444 | About the same | Investment in water-smart technology/process |
| | | | | In 2022, Oxy's total estimated produced/entrained withdrawals increased 8% (categorized as “About the same” when the change is 25% less to 25% more) from 2021 values. The total volume of estimated produced/entrained water include volumes of produced water from Oxy and other operators. The 8% increase in produced/entrained water withdrawal can be explained by the increased production of oil and gas in 2022 compared to 2021 levels. |
In 2022, Oxy’s total estimated withdrawals from third party sources increased 117% (categorized as “Much higher” when the change is greater than 50% more) from 2021 values. The total volume of estimated withdrawals from third parties include volumes of both, fresh and non-fresh water. The increase can be explained by the higher field activity and increased production in 2022 compared to 2021.

(W1.2i) Provide total water discharge data by destination.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Primary reason for comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant</td>
<td>58,742</td>
<td>Lower</td>
<td>Investment in water-smart technology/process</td>
<td>In 2022, Oxy’s total estimated water discharge to fresh surface water decreased 38% (categorized as “Lower” when the change is...</td>
</tr>
</tbody>
</table>
25%-50% less) from 2021 values even with higher field activity due to increased oil and natural gas demand. The total discharge decrease can be explained by the following factors:

1) continuous investment and expansion of produced water recycling capabilities of Oxy’s oil and gas operations;
2) ongoing optimization of OxyChem’s technological processes, aimed at process water reuse and recycling, which led to decrease of water discharges and
3) closure of OxyChem’s Niagara Falls facility.

<table>
<thead>
<tr>
<th>Brackish surface water/seawater</th>
<th>Relevant</th>
<th>32,990</th>
<th>Much higher</th>
<th>Increase/decrease in business activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In 2022, Oxy’s total estimated water discharge to brackish surface water/seawater increased significantly from 2021 values</td>
</tr>
</tbody>
</table>
because of higher field activity. The total discharge decrease can be explained by our oil and gas operations’ freshwater discharge due to drilling operations in DJ Basin and Bolivia, where produced water quality is classified as fresh water. In addition, our DJ Basin operations fulfilled requirements of the State of Colorado to recharge river fed aquifers under the augmentation of water usage to maintain the Colorado River’s water balance.

<table>
<thead>
<tr>
<th>Groundwater</th>
<th>Relevant</th>
<th>Lower</th>
<th>Investment in water-smart technology/process</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 2022, Oxy’s total estimated water used for secondary and tertiary oil recovery decreased 6% (categorized as “About the same” when the change is 25% less to 25% more) from 2021</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In 2022, Oxy’s total estimated water discharge to fresh surface water decreased 16% (categorized as “About the same” when the change is 25% less to 25% more) from 2021 values even with higher field activity due to increased oil and natural gas demand. The total discharge decrease can be explained by the following factors:
1) continuous investment and expansion of produced water recycling capabilities of Oxy’s oil and gas operations;
2) ongoing optimization of OxyChem’s technological processes, aimed at process water reuse and recycling, which

<table>
<thead>
<tr>
<th>Third-party destinations</th>
<th>Relevant</th>
<th>45,093</th>
<th>About the same</th>
<th>Investment in water-smart technology/process</th>
</tr>
</thead>
</table>

- Increase in produced water recycling capabilities
- Ongoing optimization of process technologies
led to decrease of water discharges and 3) closure of OxyChem’s Niagara Falls facility.

W1.2j

(W1.2j) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

<table>
<thead>
<tr>
<th>Relevance of treatment level to discharge</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary treatment Relevant but volume unknown</td>
<td>Our approach encompasses programs, standards and operational practices designed to conserve freshwater and improve the efficient use, recycling, and reuse of water resources and the quality of water being treated and discharged to surface water bodies. Oxy discharges water to surface water bodies after treatments that meet applicable local, state and federal requirements. Oxy also considers the longer-term patterns of integrated water resources management, regenerative capacity of groundwater and aquifers, population growth/demand shifts and the potential for weather-related impacts as we evaluate and mitigate the effects of water risks on key operations, the health, safety and well-being of employees and contractors, and our host communities.</td>
</tr>
<tr>
<td>Secondary treatment Relevant but volume unknown</td>
<td>Our approach encompasses programs, standards and operational practices designed to conserve freshwater and improve the efficient use, recycling, and reuse of water resources and the quality of water being treated and discharged to surface water bodies. Oxy discharges water to surface water bodies after treatments that meet applicable local, state and federal requirements. Oxy also considers the longer-term patterns of integrated water resources management, regenerative capacity of groundwater and aquifers, population growth/demand shifts and the potential for weather-related impacts as we evaluate and mitigate the effects of water risks on key operations, the health, safety and well-being of employees and contractors and our host communities.</td>
</tr>
<tr>
<td>Scenario</td>
<td>Relevance</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Primary treatment only</td>
<td>Relevant</td>
</tr>
<tr>
<td>Discharge to the natural environment without treatment</td>
<td>Relevant</td>
</tr>
<tr>
<td>Discharge to a third party without treatment</td>
<td>Relevant</td>
</tr>
<tr>
<td>Other</td>
<td>Not relevant</td>
</tr>
</tbody>
</table>
bodies after treatments that meet applicable local, state and federal requirements. Oxy also considers the longer-term patterns of integrated water resources management, regenerative capacity of groundwater and aquifers, population growth/demand shifts and the potential for weather-related impacts as we evaluate and mitigate the effects of water risks on key operations, the health, safety and well-being of employees and contractors, and our host communities.

W1.3

(W1.3) Provide a figure for your organization’s total water withdrawal efficiency.

<table>
<thead>
<tr>
<th>Revenue</th>
<th>Total water withdrawal volume (megaliters)</th>
<th>Total water withdrawal efficiency</th>
<th>Anticipated forward trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>36,634,000,000</td>
<td>451,193</td>
<td>81,193.6355395584</td>
</tr>
</tbody>
</table>

Oxy is advancing our Net-Zero Strategy with multiple low carbon ventures which will have separate water needs. As we design and build those businesses and facilities with our partners, we will assess their water needs and expect to apply many of the water conservation, treatment and recycling measures we are currently applying in our oil & gas and chemical businesses, but we believe it would currently be too speculative to predict the five-year water discharges from those new ventures.

W-CH1.3

(W-CH1.3) Do you calculate water intensity for your activities in the chemical sector? Yes

W-CH1.3a

(W-CH1.3a) For your top five products by production weight/volume, provide the following water intensity information associated with your activities in the chemical sector.

Product type

Bulk inorganic chemicals
Product name
Caustic Soda

Water intensity value (m3/denominator)

Numerator: water aspect
Total water consumption

Denominator
m3

Comparison with previous reporting year

Please explain
Total water consumption is the net consumption for the total company. Water intensity is the total annual net water consumption divided by annual production in tons. OxyChem does not disclose water intensity metrics per product.

Product type
Bulk inorganic chemicals

Product name
Chlorine

Water intensity value (m3/denominator)

Numerator: water aspect
Total water consumption

Denominator
m3

Comparison with previous reporting year

Please explain
OxyChem does not disclose water intensity metrics per product.

Product type
Bulk organic chemicals

Product name
VCM (vinyl chloride monomer)
Water intensity value (m3/denominator)

Numerator: water aspect
Total water consumption

Denominator
m3

Comparison with previous reporting year

Please explain
Total water consumption is the net consumption for the total company. Water intensity is the total annual net water consumption divided by annual production in tons. OxyChem does not disclose water intensity metrics per product.

Product type
Bulk inorganic chemicals

Product name
PVC (polyvinyl chloride)

Water intensity value (m3/denominator)

Numerator: water aspect
Total water consumption

Denominator
m3

Comparison with previous reporting year

Please explain
OxyChem does not disclose water intensity metrics per product.

Product type
Bulk inorganic chemicals

Product name
Ethylene

Water intensity value (m3/denominator)
Numerator: water aspect
Total water consumption

Denominator
m³

Comparison with previous reporting year

Please explain
OxyChem does not disclose water intensity metrics per product.

W-OG1.3

(W-OG1.3) Do you calculate water intensity for your activities associated with the oil & gas sector?
Yes

W-OG1.3a

(W-OG1.3a) Provide water intensity information associated with your activities in the oil & gas sector.

Business division
Upstream

Water intensity value (m³/denominator)
0.03

Numerator: water aspect
Freshwater withdrawals

Denominator
Barrel of oil equivalent

Comparison with previous reporting year
About the same

Please explain
While oil production levels increased in 2022, freshwater intensity remained about the same due to Oxy's water management program, which is designed to conserve water sources in communities where we operate. The vast majority of water managed by Oxy's oil and gas operations is co-produced from hydrocarbon reservoirs with oil and natural gas. Oxy strives to use non-freshwater and recycled or reused sources in place of freshwater for oil and gas operations. Oxy also obtains water from other non-potable sources. In addition, we routinely assess our water management practices, including those with respect to water supply, treatment, reuse, recycling and discharge, to identify
opportunities for improvement. In 2022, 96% of water withdrawals for oil and gas operations were from brackish water, primarily produced water. Only 4% of our water withdrawals for oil and gas operations were from freshwater. Our oil and gas operations recycled 67% of the total water withdrawals from all sources. In our New Mexico’s Delaware Basin operations, we did not withdraw any water from freshwater sources in 2022. All sourced water was non-fresh, with 90% of it being produced water. Similarly, the Midland Basin operations were fully sourced with non-fresh water with 67% of it being produced water.

In March of 2021, Oxy finished construction of a recycling facility in Midland to increase water recycling in our Texas Permian operations. This facility is a state-of-the-art, water treatment site located at the South Curtis Ranch. The facility is utilized by Oxy and other operators in the area that view the recycled produced water as the valuable resource. Having this facility, Oxy drives and helps others to minimize fresh and brackish water consumption. In 2022, Oxy recycled 10.6 million barrels while other operators recycled 2.6 million barrels of their produced water at the site. Of total 13.2 million barrels of recycled produced water, Oxy reused 8.2 million barrels and other operators reused 4.3 million barrels for their development, including hydraulic fracturing. Oxy and other operators that utilize the South Curtis Ranch facility avoided the need to purchase 12.5 million barrels of fresh and/or brackish water, which in turn would have added to water disposal. Two benefits are being achieved from the single action of reusing produced water. Our approach of sharing recycled produced water with others will serve as a model for future recycling facilities in other locations.

W1.4

(W1.4) Do any of your products contain substances classified as hazardous by a regulatory authority?

<table>
<thead>
<tr>
<th>Products contain hazardous substances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>

W1.4a

(W1.4a) What percentage of your company’s revenue is associated with products containing substances classified as hazardous by a regulatory authority?

<table>
<thead>
<tr>
<th>Regulatory classification of hazardous substances</th>
<th>% of revenue associated with products containing substances in this list</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Water Pollution Control Act / Clean Water Act (United States Regulation)</td>
<td>61-80</td>
<td>Revenue value here is represented for OxyChem</td>
</tr>
</tbody>
</table>
W1.5

(W1.5) Do you engage with your value chain on water-related issues?

<table>
<thead>
<tr>
<th>Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppliers</td>
</tr>
<tr>
<td>Other value chain partners (e.g., customers)</td>
</tr>
</tbody>
</table>

W1.5a

(W1.5a) Do you assess your suppliers according to their impact on water security?

Row 1

- **Assessment of supplier impact**
 - Yes, we assess the impact of our suppliers

- **Considered in assessment**
 - Supplier dependence on water
 - Supplier impacts on water availability

- **Number of suppliers identified as having a substantive impact**
 - 120

- **% of total suppliers identified as having a substantive impact**
 - 1-25

Please explain

We send out a supplier survey every year requesting sustainability information across several categories including total water consumption and water intensity. We have also included water stewardship commitments in our supplier code of conduct and Terms and Conditions. OxyChem is planning to evaluate our supply chain on sustainability performance in the future.

W1.5b

(W1.5b) Do your suppliers have to meet water-related requirements as part of your organization’s purchasing process?

<table>
<thead>
<tr>
<th>Suppliers have to meet specific water-related requirements</th>
<th>Comment</th>
</tr>
</thead>
</table>
| Row 1
| No, but we plan to introduce water-related requirements within the next two years | As a participant company in the American Chemistry Council’s Responsible Care® initiative, OxyChem applies a management system that regularly measures and tracks performance through established metrics and extends best environmental stewardship, safety and security practices to its business partners and suppliers. OxyChem’s Supply Chain Performance Management (SCPM) |
improves supply chain efficiency by continually monitoring performance. The cornerstone of OxyChem’s SCPM is our "Supply Chain Scorecard," a custom report on supply chain efficiency between our customers and OxyChem. OxyChem Customer Relations Representatives review data and metrics to identify possible supply chain opportunities. OxyChem integrates sustainability and water goals into the Terms and Conditions as well in our Supplier Code of Conduct that references adherence to water stewardship practices. We are proud to be recognized as a responsible oil and gas and chemical company and as a Partner of Choice®. OxyChem is a five-time winner of the American Chemistry Council’s top safety performance award, including "Responsible Care® Company of the Year". Oxy utilizes a variety of third-party assessment tools and sustainability "scorecards" to benchmark management practices and operating performance with suppliers. OxyChem increased its position as an industry leader by achieving EcoVadis Gold certification and in 2021 ranked in the top 4% of companies in our industry for sustainable supply chain performance.

W1.5d

(W1.5d) Provide details of any other water-related supplier engagement activity.

<table>
<thead>
<tr>
<th>Type of engagement</th>
<th>Innovation & collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details of engagement</td>
<td>Encourage/incentivize innovation to reduce water impacts in products and services</td>
</tr>
<tr>
<td></td>
<td>Encourage/incentivize suppliers to work collaboratively with other users in their river basins toward sustainable water management</td>
</tr>
<tr>
<td></td>
<td>Educate suppliers about water stewardship and collaboration</td>
</tr>
<tr>
<td></td>
<td>Other, please specify</td>
</tr>
<tr>
<td>% of suppliers by number</td>
<td>Less than 1%</td>
</tr>
<tr>
<td>% of suppliers with a substantive impact</td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

Rationale for your engagement

OxyChem is a founding member of the Alliance to End Plastic Waste, which plans to invest $1.5 billion over five years to help eliminate plastic waste in the environment, especially in the oceans. The Alliance’s strategy is to develop and bring to scale innovative solutions that will minimize and manage plastic waste and promote solutions for used plastics by helping to enable a circular economy. This global effort consists of...
nearly 70 companies in the plastics value chain, including chemical and plastic manufacturers, consumer goods companies, retailers, converters and waste management companies, and the Alliance collaborates with governments and international organizations. OxyChem’s commitment to protecting the environment and our watersheds is also reflected by our participation in Operation Clean Sweep (OCS) blue. OCS blue is an industry initiative to implement best practices to prevent and report spills of PVC resin products outside of the manufacturer’s fence line. In addition, OxyChem is working with its transportation partners to implement the OCS blue program during transportation of PVC resin products. In 2021, OxyChem had no reportable spills of PVC resin products across our PVC manufacturing sites.

Impact of the engagement and measures of success
OxyChem is collaborating with members of the Alliance to End Plastic Waste and OCS blue to promote infrastructure, education and engagement, innovation, and clean-up efforts to reduce plastic waste in the environment. These collective efforts combined with active stakeholder engagement and public awareness campaigns are designed to bring to scale solutions that minimize and manage plastic waste and promote solutions for used plastics by helping to enable a circular economy. To further its sustainability goals, OxyChem partners with Water Mission and the Global Water Center to provide clean safe drinking water to millions of people across 56 countries. This partnership has expanded into 3 more countries and provided over 1 billion gallons of fresh clean water and sanitation to millions of impacted people.

Comment
OCS blue is an industry initiative to implement best practices to prevent and report spills of PVC resin products outside of the manufacturer’s fence line. In addition, OxyChem is working with its transportation partners to implement the OCS blue program during transportation of PVC resin products.

W1.5e

(W1.5e) Provide details of any water-related engagement activity with customers or other value chain partners.

<table>
<thead>
<tr>
<th>Type of stakeholder</th>
<th>Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of engagement</td>
<td>Education / information sharing</td>
</tr>
<tr>
<td>Details of engagement</td>
<td>Educate and work with stakeholders on understanding and measuring exposure to water-related risks</td>
</tr>
<tr>
<td>Rationale for your engagement</td>
<td></td>
</tr>
</tbody>
</table>

--
OxyChem has partnered with Water Mission to provide access to clean water across the globe. We have helped over 1 million people in refugee camps and disaster areas. OxyChem has also completed Watershed risk analysis for all of our operations across the US, Chile, and Canada. We are assessing these risks and will be sharing these with our Community Advisory Panels on our efforts in water stewardship.

Impact of the engagement and measures of success
We helped about 4 million people with access to fresh drinking water. We track the amount of clean fresh drinking water projects across 59 countries. OxyChem’s ACL Chemistry has produced over 1 billion gallons of fresh drinking water for people in underserved countries and disastrous areas.

W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts?
No

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

<table>
<thead>
<tr>
<th>Water-related regulatory violations</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 No</td>
<td>In 2022 none of Oxy’s operations, both domestically and internationally had water-related regulatory violations.</td>
</tr>
</tbody>
</table>

W3. Procedures

W3.1

(W3.1) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?

<table>
<thead>
<tr>
<th>Identification and classification of potential water pollutants</th>
<th>How potential water pollutants are identified and classified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Yes, we identify and classify our potential water pollutants</td>
<td>Yes, we monitor and measure water-based factors compliant to our permit.</td>
</tr>
</tbody>
</table>
W3.1a

(W3.1a) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your activities.

Water pollutant category

Oil

Description of water pollutant and potential impacts

Oil spilled into seawater water may present the potential for impacts to the ocean, coastal fishing and in the vicinity of our operations.

Value chain stage

Direct operations

Actions and procedures to minimize adverse impacts

Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements

Please explain

In our offshore operations we conduct water treatment and monitor Oil & Grease and/or Toxicity for discharges to sustain water quality standards in receiving seawater in accordance with our National Pollutant Discharge Elimination System permits.

W3.3

(W3.3) Does your organization undertake a water-related risk assessment?

Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Value chain stage

Direct operations

Coverage

Full

Risk assessment procedure

Water risks are assessed as part of an established enterprise risk management framework
Frequency of assessment
Annually

How far into the future are risks considered?
1 to 3 years

Type of tools and methods used
Tools on the market
Enterprise risk management

Tools and methods used
WRI Aqueduct
Other, please specify
Occidental's Operational Management System (OMS)

Contextual issues considered
Water availability at a basin/catchment level
Water quality at a basin/catchment level
Stakeholder conflicts concerning water resources at a basin/catchment level
Water regulatory frameworks
Status of ecosystems and habitats
Access to fully-functioning, safely managed WASH services for all employees

Stakeholders considered
Employees
Investors
Local communities
Regulators
Suppliers
Water utilities at a local level

Comment
Water quality and quantity are both key components of the design, implementation and maintenance of our development projects and facilities. Local ecosystems and watersheds are factored into our Operational Management System (OMS) and water risk assessments. The OMS identifies, assesses and prioritizes significant potential water-related risks. The OMS sets consistent worldwide performance expectations and standards across each business segment’s respective operations. Oxy ensures adequate water is available for drinking, cleaning and hygiene at each of our facilities and field operations. Oxy manages our water use consistent with local communities’ interests near our operations and to avoid impacting the environment or affecting the access of local communities to freshwater supplies.

Current regulatory frameworks and tariffs at the local and municipal level are factored into our OMS and water risk assessments. Regulators are factored into water risk assessments, since laws, regulations and permits are central to our water recycling projects and facilities, our sourcing of make-up water, and our transportation and disposal of surplus produced and process water. In addition, water/waste water utilities
at a local level are always factored into water risks assessments.

Oxy seeks to optimize water from non-potable sources, using the lowest-quality water acceptable for operational activities, and recycles produced water and wastewater where feasible to avoid competing for freshwater resources with municipal, agricultural or industrial users or using freshwater needed to sustain riparian habitat.

Under our OMS we identify, assess and prioritize local ecosystems and watersheds. Oxy’s supplemental use of tools such as the World Economic Forum Global Risks Report and WRI Aqueduct is consistent with this approach.

Value chain stage
Supply chain

Coverage
Partial

Risk assessment procedure
Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment
Annually

How far into the future are risks considered?
1 to 3 years

Type of tools and methods used
Tools on the market
Enterprise risk management
Databases

Tools and methods used
EcoVadis
WRI Aqueduct
Other, please specify
Commercial data providers

Contextual issues considered
Implications of water on your key commodities/raw materials

Stakeholders considered
Suppliers

Comment
Water is integrated into a comprehensive, company-wide risk assessment process incorporating direct operations using our OMS and associated strategic planning. Oxy directly engages certain suppliers using third-party water risk assessments and sustainability “scorecards” in applicable operating areas or uses these tools indirectly as
an industry performance benchmark.

Commercial suppliers do not present a consequential risk to our operations. However, Oxy’s access to water resources, secured through our substantial recycling and reuse of produced water as well as local water rights or contracts, is closely managed. Oxy monitors the market conditions and vulnerability of suppliers to water risks, where applicable, and can adjust our assessment accordingly.

Value chain stage
Other stages of the value chain

Coverage
Partial

Risk assessment procedure
Water risks are assessed as a standalone issue

Frequency of assessment
Annually

How far into the future are risks considered?
1 to 3 years

Type of tools and methods used
Enterprise risk management

Tools and methods used
Other, please specify
OMS

Contextual issues considered
Water availability at a basin/catchment level
Water quality at a basin/catchment level

Stakeholders considered
Local communities

Comment
Oxy prioritizes the sustainability, health, safety and environment of the communities in which we operate. We follow established OMS procedures to gain an understanding of the potential effects of Oxy’s presence on the local community and the surrounding ecosystem. Results from the assessment and input from the community advances our relationships and informs our work to promote mutually beneficial outcomes and to avoid competing for freshwater resources with municipal, agricultural or industrial users or using freshwater needed to sustain riparian habitat.
W3.3b

(W3.3b) Describe your organization’s process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

<table>
<thead>
<tr>
<th>Row</th>
<th>Rationale for approach to risk assessment</th>
<th>Explanation of contextual issues considered</th>
<th>Explanation of stakeholders considered</th>
<th>Decision-making process for risk response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oxy’s OMS and risk management approach identifies, assesses and prioritizes significant potential water-related risks. The OMS sets consistent worldwide performance expectations and standards across each business segment’s respective operations. The OMS facilitates compliance with laws and regulations and the management of ESG risks, specifically including water-related risks, to improve overall business performance. Oxy manages our water use consistent with community interests near our operations and to avoid impacting the environment, or our license to operate in these communities. Oxy also engages with local water resource consortia in The Permian Basin of West Texas and Southeast New Mexico experience drought conditions and water stress. These prevailing drought risks are factored into Oxy’s business plans and water use strategy to operationalize and mitigate risks, and to identify and invest in opportunities that could provide cost savings or generate revenues. Our development plans for oil and gas, chemicals and low carbon ventures factor the risk associated with potential future scarcity of freshwater. Investing in solutions to treat and recycle a larger capacity of produced water in both New Mexico and Texas has delivered significant value to our operations. We have increased the reliability of our supply for Permian operations, decreased our demand for water</td>
<td>Our updated HSE and Sustainability Principles, approved by our Board of Directors in 2022, our OMS and the ongoing work of our Water Strategy and Technology Group further align our water stewardship strategies with Ipieca’s Water Management Framework and UN SDG 6 and address collaboration around integrated water resources management; local participation in the collective management of water, particularly in areas of water scarcity; improvement of water quality; and recycling and reuse of water, where feasible, to reduce usage of freshwater.</td>
<td>Oxy’s HSE and Operations professionals in our business units report key water metrics centrally to the VP of Environmental & Sustainability and Oxy’s Water Strategy & Technology Group and meet periodically in a Water Stewardship Community of Practice to share learnings regarding risks and mitigation measures. Water-related risks are periodically assessed under our HSE Risk Management program and potential mitigation measures are evaluated and prioritized by the Water Strategy & Technology Group for capital allocation, engineering and deployment of projects. A key example of the outcome of this process is Oxy’s multiple central water recycling facilities we have commissioned over the past 5 years</td>
<td></td>
</tr>
<tr>
<td>multiple locations, in order to collaborate on water recycling and desalination technologies, provide constructive input in the regulatory development process and proactively engage with regulators and local community members in order to mitigate stakeholder risk and expand water recycling and reuse opportunities and additional beneficial uses for surplus produced water.</td>
<td>from fresh and non-fresh water sources, and reduced truck traffic and trucking and disposal costs by centralizing our water treatment and recycling of water. We have also increased operational flexibility to treat larger volumes of water as warranted by our development plans in oil and gas and low carbon ventures.</td>
<td>in our most active development areas of Midland and Permian Basins, in both New Mexico and Texas to reduce our demand for make-up water for completions and other operations, reduce our surplus water disposal and enable zero water discharge in certain facilities. Key water-related risks, regulatory programs and mitigation projects are discussed with the EHS Committee of the Board and integrated with other higher-level company risks through Oxy’s Enterprise Risk Management Council that includes members of senior management and reports to the Audit Committee of the Board. We believe these efforts promote active informed decision-making and management of water-related and other risks, including allocation of resources to promote water stewardship under our HSE & Sustainability Principles.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, only within our direct operations

W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

Oxy’s Enterprise Risk Management program provides the framework for assessing substantive enterprise risks through defined ranges of qualitative and quantitative impact criteria which, together with likelihood criteria, are assessed and prioritized through use of a risk matrix. Financial impacts greater than $100MM occurring in a short time period and with at least a moderate likelihood are generally considered substantive. However, this is not a threshold for the Enterprise Risk Management program, which considers a range of potential impact and likelihood criteria.

Substantive financial and strategic risks and opportunities are considered from both qualitative and quantitative aspects. For quantifiable indicators, total assets, capital deployed, product revenues and operating costs form the basis of assessment of potential significant impact. Qualitative indicators include stakeholder expectations (communicated through multiple engagements), strategic analysis, and experiential knowledge.

Oxy defines the substantive financial impact of climate change in the context of the potential for rising energy and feedstock costs, availability of water resources and operational impacts from climate-related events and potential restrictions on the production, sale or use of our oil and gas products in future years. These matters have not significantly affected to date our ability to produce oil and gas and chemicals, the demand for our oil and gas chemical products, or the value of our oil and gas reserves.

Oxy considers water-related risks, and other climate and ESG risks, in scenario planning for the pathways to achieve our net-zero and water stewardship goals and in our annual capital budgeting process. We have been able to obtain a sufficient and reliable supply and quality of water needed for our operations (whether freshwater, brackish water or recycled produced water). To date our operations have not been affected by water availability. Water-related risks associated with the management of produced water, including costs and regulations associated with the generation, transportation, recycling or reuse of produced water and the disposal of surplus produced water, affect our planning and budgeting processes with respect to one or more assets in a given time period. Our Management Discussion and Analysis (MD&A) in Oxy’s 2022 Form 10-K or more recent Form 10-Qs describe the regulatory structure that relates to our businesses, including regulations with respect to water and other climate and
environmental matters, as well as material risk factors associated with our businesses and operations.

W4.1b

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>27</td>
<td>26-50</td>
</tr>
</tbody>
</table>

Certain facilities in the Permian Basin (Texas, New Mexico), DJ Basin and Powder River Basin (Rockies, U.S.) and Oman (Safah and Mukhaizna) are subject to potential water risks over the longer-term from drought conditions, which Oxy periodically assesses and mitigates under our Operational Management System by reusing or recycling significant quantities of produced water and process water and by conserving fresh water sources and non-fresh surface and ground water where feasible for other beneficial uses. Other Oxy facilities along the U.S. Gulf Coast and in the Gulf of Mexico are subject to water risks associated with storms or coastal flooding. Oxy conducts periodic risk management evaluations and strives to mitigate these risks under our Operational Management System through our asset integrity, facilities engineering and emergency preparedness programs.

W4.1c

(W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

Country/Area & River basin

United States of America
Other, please specify
- Houston Ship Channel-Galveston Bay, Lower Mississippi, Gulf Coast, Itata-Chile

Number of facilities exposed to water risk

12

% company-wide facilities this represents
% company’s global oil & gas production volume that could be affected by these facilities
1-25

% company’s total global revenue that could be affected
Less than 1%

Comment
Oxy has chemical production facilities (vinyls and basic chemicals), power generation assets and product distribution terminals along the U.S. Gulf Coast. Every two years, we perform a water risk analysis for all OxyChem sites. Using the WRI Aqueduct Water Risk Atlas tool, we evaluate our physical water risk, coastal flooding and drought over three time periods. The first is current state of our water risk, the second is 2030 time period and third is 2040. These different time period scenarios show an overall water risk across our sites as a low risk of (1). Site locations near the Houston Ship Channel-Galveston Bay is rated as low-medium (1-2) for coastal flood risk. Our Louisiana sites are rated as extremely high (more than 2 occurrences in 1,000) for coastal flood risk. Overall drought risk is low-medium (0.3 to 0.6) for all sites. Oxy strives to mitigate these risks under our Operational Management System through our asset integrity, facilities engineering and emergency preparedness programs, as well as our proactive water conservation and recycling programs.

Country/Area & River basin
United States of America
Colorado River (Caribbean Sea)

Number of facilities exposed to water risk
15

% company-wide facilities this represents
1-25

% company’s global oil & gas production volume that could be affected by these facilities
26-50

% company’s total global revenue that could be affected
21-30

Comment
Oxy’s Permian oil and gas production comprised 35% of our 2022 global operated production. The drought risk in both Texas and New Mexico locations is assessed as Low to Medium by the WRI Aqueduct Water Risk Atlas. The drought risk measures where droughts are likely to occur, the population and assets exposed, and the vulnerability of the population and assets to adverse effects. Higher values indicate
higher risk of drought.

Even assuming a prolonged, severe drought similar to conditions in 2011, Oxy's Permian operations would not be materially interrupted. Since 2016, we have constructed and are operating major produced water recycling facilities in the Permian Basin in both New Mexico and Texas. In March of 2021 we finished construction and started operation of the South Curtis Ranch to substantially increase water recycling at scale in our Texas Permian operations. The facility is utilized by Oxy and other operators in the area that view the recycled produced water as a valuable resource. Having this facility, Oxy drives and helps others to minimize fresh and brackish water withdrawal and consumption. In 2022, Oxy recycled 10.6 million barrels while other operators recycled 2.6 million barrels of their produced water at the South Curtis Ranch plant.

Of the total 13.2 million barrels of recycled produced water at this facility, Oxy reused 8.2 million barrels and other operators reused 4.3 million barrels for their development, including hydraulic fracturing and other operations. This means that Oxy and other operators that utilize the South Curtis Ranch facility avoided the need to purchase 12.5 million barrels of fresh and/or brackish water, which in turn would have added to water disposal. Two benefits are being achieved from the single action of reusing produced water. Our approach of sharing recycled produced water with multiple operators will serve as a model for future recycling facilities in other business units.

W4.2

(W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

W4.2c

(W4.2c) Why does your organization not consider itself exposed to water risks in its value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact?

<table>
<thead>
<tr>
<th>Primary reason</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risks exist, but no substantive impact anticipated</td>
<td>In our water-related risk assessments, we have identified marginal water-related risk in our value chain.</td>
</tr>
</tbody>
</table>

W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?

Yes, we have identified opportunities, and some/all are being realized
(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

<table>
<thead>
<tr>
<th>Type of opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products and services</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary water-related opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced impact of product use on water resources</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company-specific description & strategy to realize opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxy works collaboratively with our service companies to improve drilling, completion and production techniques to enhance the efficiency of water usage and to manage the additives required for hydraulic fracturing. For example, Oxy's reuse of drilling and completion fluids minimizes both the demand for make-up water and the volume of surplus fluids to be disposed. We drill using closed-loop systems in areas with high freshwater tables to preserve the resource. Within our U.S. drilling operations, we store drilling muds and flowback water in closed containment systems (tanks) for recycling in drilling or completions with eventual disposal of residuals. In addition, we apply the mobile water-on-demand technology for treating and recycling produced and flowback water from completions on-site thus reducing freshwater withdrawals needed to complete wells and minimizing surplus water that requires disposal. We are expanding and scaling up application of this technology at our drilling sites in the areas we operate.</td>
</tr>
<tr>
<td>Also, Oxy's commitment to using produced water from oil and gas reservoirs and other non-freshwater sources where feasible reduces our demand for freshwater. OxyChem utilizes fresh water for once through cooling and returns the water back to the source watershed. This reduces the impact on the use of municipal drinking water resources in the communities where we operate and reduces costs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated timeframe for realization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current - up to 1 year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnitude of potential financial impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-medium</td>
</tr>
</tbody>
</table>

Are you able to provide a potential financial impact figure?

No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)

Potential financial impact figure – maximum (currency)
Explanation of financial impact
Our estimates of financial impact are proprietary and confidential business information.

Type of opportunity
Products and services

Primary water-related opportunity
Reduced impact of product use on water resources

Company-specific description & strategy to realize opportunity
We are dedicated to increasing the amounts of recycled produced water and reducing our freshwater use. In 2016 we built a recycling facility in New Mexico; in 2020 and 2021 we built and put into operation our new facility in Midland to increase water recycling at scale in our Texas Permian operations. Oxy is leading produced water recycling in the Midland Basin and sharing this resource with other operators to reduce withdrawals of fresh and nonfresh water in the region. We are sharing our infrastructure with other operators to recycle their produced water at our facilities. In addition, we are engaging surface landowners and water service companies on the benefits of produced water recycling in the region. Our construction and operation of major water recycling facilities demonstrate how we factor water scarcity risks in the Permian directly into Oxy’s business plans and water use strategy to operationalize and mitigate risks, and also to identify and invest in opportunities that provide cost savings or generate revenues. Our experience shows that investing in solutions to treat a larger capacity of produced water delivers value to our operations, the stakeholders throughout our region, and the environment.

Estimated timeframe for realization
Current - up to 1 year

Magnitude of potential financial impact
Low-medium

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)

Potential financial impact figure – maximum (currency)

Explanation of financial impact
Our estimates of financial impact are proprietary and confidential business information.
W5. Facility-level water accounting

W5.1

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.

W6. Governance

W6.1

(W6.1) Does your organization have a water policy?

Yes, we have a documented water policy that is publicly available

W6.1a

(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Company-wide</td>
<td>Commitment to align with international frameworks, standards, and widely-recognized water initiatives Commitment to prevent, minimize, and control pollution Commitment to safely managed Water, Sanitation and Hygiene (WASH) in the workplace Commitment to safely managed Water, Sanitation and Hygiene (WASH) in local communities</td>
</tr>
</tbody>
</table>
in refugee camps and disaster relief; 3) Oxy’s water sourcing for our oil and gas operations, OLCV and OxyChem; 4) Our efficient use, recycling and reuse of water in our operations, including design, operation and maintenance of our water treatment, recycling and conveyance systems; and 6) The quality of water being treated and discharged to permitted receiving waters such as surface water bodies.Oxy’s performance objectives are also in support of and aligned with the United Nations Sustainable Development Goals (SDGs), in particular SDGs 6, 8, 9, 12, 13, 14 and 15. The SDGs give Oxy a complementary framework to use to communicate and partner with host governments and communities. Our HSE and Sustainability Principles, our OMS and the ongoing work of our Water Strategy and Technology Group further align our water stewardship strategies with the Ipieca’s Water Management Framework and UN SDG 6 and address collaboration around integrated water resources management; local participation in the collective management of water, particularly in areas of water scarcity; improvement of water quality; and recycling and reuse of water, where feasible, to reduce usage of freshwater.

W6.2

(W6.2) Is there board level oversight of water-related issues within your organization? Yes

W6.2a

(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of individual or committee</th>
<th>Responsibilities for water-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director on board</td>
<td>The Chair and members of the Environmental, Health and Safety (EH&S) Committee and the Sustainability and Shareholder Engagement (S&SE) Committee have responsibility for oversight of water-related issues. The EH&S Committee reviews, oversees and discusses with management, and reports to the full Board regarding, (1) the status of compliance with water-related laws and regulations; (2) the results of internal compliance reviews and remediation projects; and (3) Oxy’s performance on water-related initiatives. The S&SE Committee reviews, oversees and discusses with management, and reports to the full Board regarding, Oxy’s engagement and external reporting on sustainability matters,</td>
</tr>
</tbody>
</table>
(W6.2b) Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled - some meetings</td>
<td>Monitoring implementation and performance</td>
<td>Our Board of Directors considers water-related risks and opportunities in our strategic planning. In 2022, the Board approved Oxy’s updated HSE and Sustainability Principles, which specifically address conserving water and other natural resources and providing innovative products, services and solutions to help address global challenges and advance the UN Sustainable Development Goals, including those related to clean water.</td>
</tr>
<tr>
<td></td>
<td>Overseeing acquisitions, mergers, and divestitures</td>
<td>The Board addresses water and associated climate risk factors and is dedicated to continual evaluation of the impact of these risks on our business. The Board has discussed ESG and operational issues significant to our business at its regular meetings for decades, based on, among other things, the Board’s original HSE Principles adopted in 1994.</td>
</tr>
<tr>
<td></td>
<td>Overseeing major capital expenditures</td>
<td>Our integration of water risk-related issues into our business strategy and environmental stewardship helps inform our active shareholder engagement.</td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding corporate responsibility strategy</td>
<td>During engagements in 2022, we discussed climate and other sustainability matters with a majority of the shareholders participating and we regularly engage with stakeholders on our Net-Zero Strategy, sustainability practices and reporting. Some stakeholders inquire about our water stewardship programs, and we included slides about our water recycling program in the Permian Basin in our February 2022 4Q21 earnings call slides. Our conversations have led to a better understanding of shareholder and stakeholder interests, including regarding the nexus between</td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding major plans of action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding risk management policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting performance objectives</td>
<td></td>
</tr>
</tbody>
</table>

public policy trends and social responsibility programs and charitable contributions, including those related to water and climate.
water and climate, and helped shape Oxy’s Net-Zero Strategy, water stewardship policies and goals, and strong sustainability performance.

Importantly, we believe our strategy supports the four key stakeholder groups for an inclusive net-zero transition – energy workers, energy-producing communities, communities susceptible to climate impacts, and low-income consumers. Our focus on a net-zero transition provides for and assumes continued local investments in energy-producing areas that sustain community benefits such as prosperity, public health and safety and enhanced environmental quality. A successful net-zero transition must meet daily human needs, particularly those of disadvantaged communities, for reliable energy, clean water and essential products. In addition to Oxy’s energy production, OxyChem produces the basic building block chemicals that provide society with clean drinking water, and the essential feedstocks for pharmaceuticals and nearly every home-based product that consumers use every day to enjoy a better quality of life.

W6.2d

(W6.2d) Does your organization have at least one board member with competence on water-related issues?

<table>
<thead>
<tr>
<th>Board member(s) have competence on water-related issues</th>
<th>Criteria used to assess competence of board member(s) on water-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>In their role on the Board’s Environmental, Health and Safety Committee, members (1) review and discuss with management the status of HSE issues, including compliance with applicable laws and regulations; (2) review and discuss the results of internal compliance reviews and remediation projects; and (3) review and discuss with management Oxy’s HSE performance and related initiatives, including water-related issues, and these specifically include regulations, compliance reviews and performance. The Chairs of the Environmental, Health and Safety Committee and the Sustainability and Shareholder Engagement Committee respectively led major refining and petrochemical and oilfield services and technology companies, and they have significant knowledge and experience regarding management of water, energy and other natural resources, pollution</td>
</tr>
</tbody>
</table>
prevention and monitoring and control of emissions. Directors are provided with continuing education, including business-specific learning opportunities through site visits and briefing sessions led by internal experts or third parties on topics relevant to Oxy. Directors also attend additional continuing education programs through organizations such as the National Association of Corporate Directors. Board Committees and the full Board receive presentations on strategic topics including the status of our water conservation, treatment and recycling projects. The Board holds an annual strategy session with: 1) deep dives into each business segment and interdisciplinary functions (e.g., emissions control and water technologies, geoscience, reserves, and life of field planning); 2) presentations from external speakers on key sustainability topics such as the carbon removal policy and the energy transition. Led by the Governance Committee, the Board also conducts a robust annual evaluation of its performance and the performance of each of the Board’s committees, including the Sustainability and Shareholder Engagement Committee and the individual directors. The Governance Committee believes that board evaluations are a critical tool in assessing the composition and effectiveness of the Board, its committees and its directors and presents an opportunity to identify areas of strength and areas capable of improvement. The annual Board evaluation includes an assessment of, among other things, whether the Board and its committees have the necessary diversity of skills, backgrounds and experiences to meet Oxy’s needs.

W6.3

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

<table>
<thead>
<tr>
<th>Name of the position(s) and/or committee(s)</th>
<th>Water-related responsibilities of this position</th>
<th>Frequency of reporting to the board on water-related issues</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Assessing future trends in water demand</td>
<td>Annually</td>
<td>In 2022, Oxy’s President and CEO recommended to the Board that they approve Oxy’s updated HSE and Sustainability Principles that reflect the central role of sustainability,</td>
</tr>
</tbody>
</table>
including water stewardship, in Oxy’s business strategy and goals. She also directly updates our workforce and key external sustainability organizations on our Operational Management System and our HSE and Sustainability policies and goals. A key example is her leadership in recommending the Board’s approval of, and capital allocation to, Oxy’s significant expansion of water treatment and recycling facilities since 2016 to support our oil and gas operations, OLCV and OxyChem, including opening additional recycling facilities in Texas in 2022. Oxy’s water treatment and recycling facilities have positioned Oxy as a leader in water management in our key operating areas, helping to confirm that Oxy’s operations do not affect access of communities to fresh water.

Name of the position(s) and/or committee(s)
Other, please specify
OxyChem’s Director Of Water Programs and Director of Sustainability

Water-related responsibilities of this position
Assessing future trends in water demand
Assessing water-related risks and opportunities
Managing water-related risks and opportunities
Setting water-related corporate targets
Monitoring progress against water-related corporate targets

Frequency of reporting to the board on water-related issues
Annually

Please explain
OxyChem’s Director of Water Programs and Director of Sustainability lead OxyChem’s water management initiatives. The goal is to grow the businesses through the application of a full-cycle, cost-efficient water management program focused on smart sourcing of water, recycling and reuse of produced and process water and environmentally sound treatment and disposal.

Name of the position(s) and/or committee(s)
Other, please specify
Senior Environmental Director and Director of Water Strategy

Water-related responsibilities of this position
Assessing future trends in water demand
Assessing water-related risks and opportunities
Managing water-related risks and opportunities
Managing public policy engagement that may impact water security

Frequency of reporting to the board on water-related issues
Annually

Please explain
Oxy's Senior Environmental Director and Director of Water Strategy lead Oxy's Water Stewardship Community of Practice, which supports development plans for oil and gas and low carbon ventures in a collaborative manner, across different operations and geographic basins, and involves HSE and water management professionals within business units.

W6.4

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Provide incentives for management of water-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Advancing our water goals and performance is incorporated into the individual portion of annual incentive compensation for Oxy’s President and CEO and executive leadership, as well as for employees working on water conservation, treatment, and recycling projects – such as Oxy’s Water Stewardship Community of Practice and Water Strategy and Technology Group. In February 2022, Oxy summarized our significant water recycling investments across the Permian Basin in Slide 42 of our 4Q21 earnings call slides and highlighted on Slide 7 that we achieved zero water disposal at certain operations due to a new water recycling facility.</td>
</tr>
</tbody>
</table>

W6.4a

(W6.4a) What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)?

<table>
<thead>
<tr>
<th>Role(s) entitled to incentive</th>
<th>Performance indicator</th>
<th>Contribution of incentives to the achievement of your organization’s water commitments</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward</td>
<td></td>
<td>Advancing our water goals and performance is incorporated into the individual portion of annual incentive compensation for Oxy’s President and CEO and executive leadership, as well as for employees working on water conservation, treatment, and recycling projects – such as Oxy’s Water Community of Practice and Water Strategy</td>
<td></td>
</tr>
</tbody>
</table>
In February 2022, Oxy summarized our significant water recycling investments across the Permian Basin in Slide 42 of our 4Q21 earnings call slides and highlighted on Slide 7 that we achieved zero water disposal.

Oxy has a dedicated innovation program in which employees are recognized for their technical innovations in water conservation, treatment and recycling as part of Oxy’s Strategic Technical Excellence Program (STEP) that promotes career progression of Oxy’s technical professionals and subject matter experts, including those who specialize in air and water quality, facilities engineering and other disciplines central to meeting our water, emissions reduction and net-zero goals. To further accelerate innovation in Oxy’s businesses, STEP has developed its Vanguard program to solicit, develop, test, pitch and fund ideas. Oxy businesses, including U.S. Onshore Resources and Carbon Management, Oxy Oman and Occidental Chemical Corporation (OxyChem) hold annual bright idea challenges where employees have submitted nearly 200 ideas focused on sustainability topics including among the recent water-focused finalists were projects to capture hydrocarbon vapors from produced water tanks, which both reduces emissions and enhances water reuse and recycling; convert from methanol to glycerine as a non-flammable, non-toxic supplemental food source for a chemical plant’s wastewater treatment system; consolidating wastewater treatment systems at another chemical plant to reduce hazardous waste generation, GHG emissions, energy use and surface footprint; installing automated control systems for boiler feedwater and blowdown control systems to reduce water, treatment chemical and energy use and GHG emissions.
W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?
 Yes, direct engagement with policy makers
 Yes, trade associations

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?
 Oxy’s Code of Business Conduct, Governance policies, HSE and Sustainability Principles and underlying policies, procedures and robust OMS foster and reinforce ethical business practices that are consistently sound, highly principled and transparent. Outcomes of the processes to integrate water-related considerations into our business strategy help inform our active engagement with shareholders, regulators, industry associations, research and technology collaborations and environmental groups. Oxy has been on the forefront of a growing consensus among government, businesses and NGOs to: 1) utilize produced water and recycled water as a supplemental resource to alleviate societal demand for freshwater, both within oil and gas operations, Oxy Low Carbon Ventures and OxyChem, and in other beneficial uses across our customer base, 2) reduce the need for surplus water disposal; and 3) treat water prior to discharge in a manner that supports ecosystems, include riparian or marine habitat for biodiversity. Examples include the New Mexico Produced Water Research Consortium and Texas Produced Water Consortium which were created with a mission to advance scientific research and technology development required to guide the development of science-based state and national policies and regulations for the treatment and fit-for-purpose reuse of oil and gas produced water. Oxy has its own research efforts to maximize effective use of produced water and reduce its disposal.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?
 Yes (you may attach the report - this is optional)
W7. Business strategy

W7.1

(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term business objectives</td>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
</tr>
<tr>
<td>Strategy for achieving long-term objectives</td>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
</tr>
</tbody>
</table>
year since 2019 as indicated in our ESG Performance metrics on our Oxy.com/sustainability website. Major water treatment and recycling projects as well as development of water disinfection products often involve multi-year permitting processes and investments, so we factor in longer-term water sustainability goals, risks and projects into our annual strategic planning process.

OxyChem continues to focus on water conservation and stewardship initiatives. OxyChem is dedicated to reducing our total water consumption by 699,000,000 gallons or 2,646 megaliters by the end of 2025. OxyChem’s operations have identified water projects to fund that have a direct impact to our 2025 sustainability goals through innovative technologies that increase conservation, recycling and reuse. Our focus on water extends beyond our operations but across the globe to advance the positive social impacts of our products we manufacture to further enhance the lives of people globally.

<table>
<thead>
<tr>
<th>Financial planning</th>
<th>Yes, water-related issues are integrated</th>
<th>5-10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As part of Oxy’s strategic planning and multi-year budgeting process, water-related issues are integrated and accounted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water quality and cleanliness are core to OxyChem’s business and have been reflected in our 2025 sustainability goals including reducing our overall consumption of water through conservation, recycling and reuse and extending the positive social impacts of our products we manufacture to further enhance the lives of people globally.</td>
<td></td>
</tr>
</tbody>
</table>

W7.2

(W7.2) What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

Row 1

<table>
<thead>
<tr>
<th>Water-related CAPEX (+/- % change)</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipated forward trend for CAPEX (+/- % change)</td>
<td>100</td>
</tr>
</tbody>
</table>
Water-related OPEX (±% change)

7

Anticipated forward trend for OPEX (±% change)

-20

Please explain

Oxy had approximately 45% higher overall water-related CAPEX and 7% higher overall water-related OPEX in 2022 due to higher oil and gas production volumes. Additionally, in several business units, water-related CAPEX increased as various water management projects were implemented throughout the year. Our Permian Basin operations increased the water-related CAPEX in 2022 with several projects such as water distribution systems, water line replacements, water treatment units and water collection impoundments. In 2023, CAPEX for water-related projects is projected to be significantly higher with water management projects in several business units and for Oxy’s first Direct Air Capture (DAC) facility, the first commercial-scale DAC plant in the Permian Basin, which is expected to be commercially operational in 2025.

W7.3

(W7.3) Does your organization use scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Oxy was the first major U.S. oil and gas company to establish net-zero GHG emission goals for Scopes 1, 2 and 3, and climate scenario planning is essential to implement these goals and gauge or progress. Climate-related risks are integrated into the OMS and strategic planning process to support readiness for emerging challenges and opportunities. Oxy considers water management investments and costs along with carbon pricing and energy intensity assumptions, in the design and review of proposed projects to support evaluation of risks and opportunities and inform capital allocation. The scope includes consideration of international accords, legislation, regulation and fiscal policy initiatives that may affect the materials, inputs and costs to produce our products, including with respect to water, and the demand for and restrictions on the use of products. The process of risk evaluation also includes potential physical and social impacts relating to severe weather events and disruptions.</td>
</tr>
</tbody>
</table>

W7.3a

(W7.3a) Provide details of the scenario analysis, what water-related outcomes were identified, and how they have influenced your organization’s business strategy.
<table>
<thead>
<tr>
<th>Type of scenario analysis used</th>
<th>Parameters, assumptions, analytical choices</th>
<th>Description of possible water-related outcomes</th>
<th>Influence on business strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Water-related Climate-related Land-use change</td>
<td>OxyChem applied WRI Aqueduct tool to conduct scenario planning for all our sites for current, 2030 and 2040 future conditions.</td>
<td>The scope of our scenario analysis and risk assessment includes the consideration of international accords, treaties, legislation, regulation and fiscal policy initiatives that may affect the raw materials (including water), other inputs and costs to produce our products, and the demand for and the restrictions on the use of our products. The process of risk evaluation also includes potential physical and social impacts relating to severe weather events and disruption due to proximity to flood-prone and water-stressed areas. As a result of our scenario planning, most of the OxyChem sites showed a low risk in water quantity, quality, and scarcity. Compared to other facilities, Ingleside, TX has a risk of water scarcity, and our Louisiana plants have a higher risk of flooding.</td>
<td>We are continuously looking for water stewardship opportunities to reduce freshwater intake, reuse process water, recover wastewater and minimize wastewater discharge. In 2022, the American Chemistry Council awarded OxyChem with the Waste Minimization, Reuse and Recycling Award and the Responsible Care Award for its achievements in the areas of waste minimization, reuse and recycling. Several water stewardship projects implemented in 2022 that were presented with these awards, collectively allowed to reduce wastewater discharge in the amount of 61,746,680 gallons per year. OxyChem employees are incentivized to generate ideas and find solutions via internal and external recognition programs. OxyChem holds an annual Sustainability Challenge incentive program open to all employees. Since 2020 OxyChem has allocated $7,500,000 and has received 113 projects ideas from our employees. Externally, the American Chemistry Council’s Award Program recognizes OxyChem’s successful sustainability projects. These</td>
</tr>
</tbody>
</table>
programs motivate our employees to identify opportunities with sustainability potential and to develop their ideas into water stewardship projects.

W7.4

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?
Yes

Please explain
We apply a range of internal prices on freshwater and on surplus produced water or process water disposal in our scenario planning, which enables us to evaluate water recycling, reuse and treatment options and water-related capital projects.

W7.5

(W7.5) Do you classify any of your current products and/or services as low water impact?

<table>
<thead>
<tr>
<th>Products and/or services classified as low water impact</th>
<th>Primary reason for not classifying any of your current products and/or services as low water impact</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>No, but we plan to address this within the next two years</td>
<td>We are currently in the process of accessing our product-level water footprint. We do not have an industry baseline to determine what is low-water impact for our products.</td>
</tr>
<tr>
<td></td>
<td>Other, please specify</td>
<td>We are currently in the process of accessing our product-level water footprint.</td>
</tr>
</tbody>
</table>

W8. Targets

W8.1

(W8.1) Do you have any water-related targets?
Yes

W8.1a

(W8.1a) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories.
W8.1b

(W8.1b) Provide details of your water-related targets and the progress made.

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>Target 1</th>
</tr>
</thead>
</table>
| Category of target | Other, please specify
 Water Risk Management |
| Target coverage | Business activity |
| Quantitative metric | Other, please specify |
| Year target was set | 2021 |
| Base year | 2012 |
| Base year figure | |
| Target year | 2023 |
| Target year figure | 100 |
| Reporting year figure | 75 |
| % of target achieved relative to base year | |
| Target status in reporting year | |
Please explain

In operating areas that may face water related stress, we apply our OMS and the use of other industry risk tools to help validate the efficacy of existing water-related safeguards and identify new opportunities to ensure the protection of water sources and receiving water bodies. Oxy considers the longer-term patterns of integrated water resources management, regenerative capacity of ground water and aquifers, population growth/demand shifts and the potential for weather related impacts in evaluating and mitigating the effects of water risks on key operations and the safety and well-being of employees and contractors. Our analysis of water-related risks includes an information-gathering process, environmental due diligence, participation in academic consortia and industry association work groups and external stakeholder engagement to inform and refine our water risk management and strategic planning processes. In 2022, in addition to fully operating a new major water recycling facility, Oxy conducted in-depth internal reviews of our water tracking and reporting processes in several key assets, optimized water data gathering and accounting processes, expanded the scope of our Water Stewardship Community of Practice and updated our evaluation of water-related risks in our Enterprise Risk Management process.

Target reference number

Target 2

Category of target

Water recycling/reuse

Target coverage

Business activity

Quantitative metric

Other, please specify
- Percentage of non-freshwater sourced in the U.S. Oil and Gas operations

Year target was set

2020

Base year

2012

Base year figure

Target year

2025

Target year figure

Reporting year figure
% of target achieved relative to base year

Target status in reporting year
Underway

Please explain
Throughout our operations, Oxy focuses on recycling and reusing produced and process water, where feasible, and strives to use non-freshwater sources in place of freshwater. When freshwater is required, such as for plant operations and cogeneration process and cooling water, Oxy seeks to obtain water from non-potable sources, to use the lowest-quality water acceptable for operational activities.

Oxy’s oil and gas operations withdrew 6% less of combined fresh and non-fresh water (including produced water) in 2022 compared to 2021 even with increased field activity related to higher oil and gas demand in 2022. 95% of water obtained by our U.S. oil and gas operations was from non-fresh water sources. In 2022, 64% of all sourced water was recycled in our domestic oil and gas operations as compared to 61% in 2021.

Comment: Nonfresh water is defined as water with TDS > 1,000 ppm.
58,111

Reporting year figure
39,882

% of target achieved relative to base year
788.9266817838

Target status in reporting year
Achieved

Please explain
OxyChem focuses on reusing process water, where feasible, and strives to return water withdrawn back to the watersheds at a better quality than when withdrawn. When freshwater is required, such as for plant operations and cogeneration process and cooling water, Oxy seeks to obtain water from non-potable sources, in order to use the lowest-quality water acceptable for operational activities. OxyChem’s absolute water consumption in 2022 was 39,882 megaliters, reflecting a reduction of baseline 20,875 megaliters from OxyChem’s baseline.

W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?

No, we do not currently verify any other water information reported in our CDP disclosure

W10. Plastics

W10.1

(W10.1) Have you mapped where in your value chain plastics are used and/or produced?

<table>
<thead>
<tr>
<th>Plastics mapping</th>
<th>Value chain stage</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Direct operations</td>
<td>We have performed product carbon footprinting for all our PVC resins and work with our Tier1 customers on exchanging sustainability related attributes.</td>
</tr>
</tbody>
</table>

W10.2

(W10.2) Across your value chain, have you assessed the potential environmental and human health impacts of your use and/or production of plastics?
Impact assessment

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Not assessed – and we do not plan to within the next two years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>We assess the production of PVC resin products within our fenceline but do not assess our customers on the impacts of how they use our products. We supply SDS sheets which have handling instructions for our materials.</td>
</tr>
</tbody>
</table>

W10.3

(W10.3) Across your value chain, are you exposed to plastics-related risks with the potential to have a substantive financial or strategic impact on your business? If so, provide details.

<table>
<thead>
<tr>
<th>Risk exposure</th>
<th>Value chain stage</th>
<th>Type of risk</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Direct operations</td>
<td></td>
<td>We have risks in pertaining to the de-selection of PVC and manufacturing of chlorine molecule due to policy decisions.</td>
</tr>
<tr>
<td></td>
<td>Supply chain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W10.4

(W10.4) Do you have plastics-related targets, and if so what type?

<table>
<thead>
<tr>
<th>Targets in place</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>No – and we do not plan to within the next two years</td>
<td>We do not have plastic related targets.</td>
</tr>
</tbody>
</table>

W10.5

(W10.5) Indicate whether your organization engages in the following activities.

<table>
<thead>
<tr>
<th>Activity applies</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of plastic polymers</td>
<td>No - We do not manufacture plastic polymers.</td>
</tr>
<tr>
<td>Production of durable plastic components</td>
<td>Yes - We manufacture resin only. We do not make plastic products for commercial sale.</td>
</tr>
<tr>
<td>Production / commercialization of durable plastic goods (including mixed materials)</td>
<td>No - We do not manufacture durable plastic goods (including mixed materials)</td>
</tr>
<tr>
<td>Production / commercialization of plastic packaging</td>
<td>No - We do not manufacture plastic packaging.</td>
</tr>
<tr>
<td>Production of goods packaged in plastics</td>
<td>No - We do not manufacture goods packaged in plastics.</td>
</tr>
</tbody>
</table>
Provision / commercialization of services or goods that use plastic packaging (e.g., retail and food services) | No | We do not manufacture goods that use plastic packaging (e.g., retail and food services).

W10.7

(W10.7) Provide the total weight of plastic durable goods/components sold and indicate the raw material content.

Row 1

| Total weight of plastic durable goods/components sold during the reporting year (Metric tonnes) |
| Raw material content percentages available to report |

Please explain

We do not disclose our production numbers.

W11. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization’s response. Please note that this field is optional and is not scored.

W11.1

(W11.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>SVP Environment & Sustainability</td>
</tr>
</tbody>
</table>

SW. Supply chain module

SW0.1

(SW0.1) What is your organization’s annual revenue for the reporting period?

<table>
<thead>
<tr>
<th>Annual revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>
SW1.1

(SW1.1) Could any of your facilities reported in W5.1 have an impact on a requesting CDP supply chain member?

No facilities were reported in W5.1

SW1.2

(SW1.2) Are you able to provide geolocation data for your facilities?

<table>
<thead>
<tr>
<th>Are you able to provide geolocation data for your facilities?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 No, this is confidential data</td>
<td>We do not disclose geographical locations of our facilities.</td>
</tr>
</tbody>
</table>

SW2.1

(SW2.1) Please propose any mutually beneficial water-related projects you could collaborate on with specific CDP supply chain members.

Requesting member

Category of project
Other

Type of project
Other, please specify

Motivation
Evaluate potential water conservation activities where we are closely located.

Estimated timeframe for achieving project

Details of project

Projected outcome

SW2.2

(SW2.2) Have any water projects been implemented due to CDP supply chain member engagement?

No
SW3.1

(SW3.1) Provide any available water intensity values for your organization’s products or services.

<table>
<thead>
<tr>
<th>Product name</th>
<th>Water intensity value</th>
<th>Numerator: Water aspect</th>
<th>Denominator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment
We do not report product level water intensity.

Submit your response

In which language are you submitting your response?
English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>Please select your submission options</th>
<th>I understand that my response will be shared with all requesting stakeholders</th>
<th>Response permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>Public</td>
</tr>
</tbody>
</table>

Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website.
Yes, CDP may share our Main User contact details with the Pacific Institute

Please confirm below
I have read and accept the applicable Terms