Oxy’s Digital Transformation

Occidental Petroleum Corporation
September 6, 2017

Jody Elliott
Senior Vice President, President, Oxy Oil and Gas

Yanni Charalambous
Vice President, CIO Information Technology

David Bowlby
Vice President, Data Management and Analytics
Forward-Looking Statements
Portions of this presentation contain forward-looking statements and involve risks and uncertainties that could materially affect expected results of operations, liquidity, cash flows and business prospects. Actual results may differ from anticipated results, sometimes materially, and reported results should not be considered an indication of future performance. Factors that could cause results to differ include, but are not limited to: global commodity pricing fluctuations; supply and demand considerations for Occidental's products; higher-than-expected costs; the regulatory approval environment; not successfully completing, or any material delay of, field developments, expansion projects, capital expenditures, efficiency projects, acquisitions or dispositions; uncertainties about the estimated quantities of oil and natural gas reserves; lower-than-expected production from development projects or acquisitions; exploration risks; general economic slowdowns domestically or internationally; political conditions and events; liability under environmental regulations including remedial actions; litigation; disruption or interruption of production or manufacturing or facility damage due to accidents, chemical releases, labor unrest, weather, natural disasters, cyber attacks or insurgent activity; failure of risk management; changes in law or regulations; reorganization or restructuring of Occidental's operations; or changes in tax rates. Words such as “estimate,” “project,” “predict,” “will,” “would,” “should,” “could,” “may,” “might,” “anticipate,” “plan,” “intend,” “believe,” “expect,” “aim,” “goal,” “target,” “objective,” “likely” or similar expressions that convey the prospective nature of events or outcomes generally indicate forward-looking statements. You should not place undue reliance on these forward-looking statements, which speak only as of the date of this presentation. Unless legally required, Occidental does not undertake any obligation to update any forward looking statements, as a result of new information, future events or otherwise. Material risks that may affect Occidental’s results of operations and financial position appear in Part I, Item 1A “Risk Factors” of the 2016 Form 10-K.

Use of non-GAAP Financial Information
This presentation includes non-GAAP financial measures. You can find the reconciliations to comparable GAAP financial measures on the “Investors” section of our website.
Agenda

• Introduction

• Oxy’s Journey to Digital Transformation

• Re-Imagined Oilfield (RIO) – What’s Next

• Driving Value Through Data Analytics
Differentiated Value-Based Approach

- More Oil
- Less Cost
- Better Inventory

Creating shareholder value over the long-term

- Culture of innovative technology and process
 - Subsurface characterization
 - Integrated development planning
 - Oxy Drilling Dynamics
 - Innovative facility designs
 - Long-term base management
 - Enhanced reservoir recovery

- Early adoption of external trends
 - Big data, analytics, and mobile workforce
 - Multi-lateral wells (SL2)
 - Crude export facility

- Innovative cost efficiency strategies
 - Logistic and Maintenance hubs
 - OBO portfolio and investments
Oxy Permian

- Largest operated position in the Permian
- Exceptional subsurface characterization
- Proven value based development approach
- Improving through unique technology advancements

Oxy Permian Business Overview

<table>
<thead>
<tr>
<th></th>
<th>Net Acres</th>
<th>Operated Wells*</th>
<th>2016 Net Production Mboed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources – Unconventional Areas</td>
<td>1.4</td>
<td>5,150</td>
<td>124</td>
</tr>
<tr>
<td>Enhanced Oil Recovery Areas</td>
<td>1.1</td>
<td>19,310</td>
<td>145</td>
</tr>
<tr>
<td>Oxy Permian Total</td>
<td>2.5MM</td>
<td>24,460</td>
<td>269</td>
</tr>
</tbody>
</table>

Permian Basin Industry Production

- **10,000 mi² 3D seismic**
- **130,000 mi² 2D seismic**
- **~10,000 gross OBO wells**
- **250 OBO wells since 2015**

*Gross Oxy operated wells including producers and injectors, and idle wells.
**Source: Wood Mackenzie 2016 production, 3/2/17, company NWI% production rates, operators shown represent ~85% of Permian Basin daily production.*
Our Journey to Digital Transformation

Production Optimization
- Institutionalized Processes and Tools
- Single reporting repository
- Focus on analysis and decision making

Consolidated ERP Systems
- Integration of operational, technical and financial data
- Global Supply Chain
- Single Chart of Accounts

Technical Data Management
- Technical Data Consolidation
- Global Well Naming Convention

Field Automation
- Standardized End Devices
- Segregation of Automation Network
- Secured Remote Access to Real time Data
- Process Historian

Next Generation Production Optimization
- Real time Data Historian
- Predictive Analytics
- Advanced Surveillance

- Smart Oilfield
- Edge Computing
- Internet of Things
- Cloud and Mobility
- Big Data and Analytics
- Cognitive Service and Machine Learning
- UAV
- Virtual Reality
Capturing and Executing Innovative Ideas

Strategic Innovation

- Innovate in Core
- Think Differently
- Follow Faster

Oxy’s Innovation Process

A flexible system that flows, changes form in real time, and seeks the most natural path to its destination.

Current Innovation Pipeline Statistics and Results
RIO Technology Project - Production Technician Digital Twin

Map View

Real-time Alarms

Route – Main Screen

Production Screen

Trend Screen

71 Mobile Applications

Ensuring employees have control where it matters most
Data Science – Going Beyond Interesting

Data Collection & Profiling
- Data Preparation & Tagging
- Data Quality & Cleaning
- Data Forensics & Profiling

Insight & Recommendations
- Visualization
- Benchmarking
- Exploitation & Exploration

Statistical Methods
- Bayesian Analysis
- Survival Analysis
- Uncertainty Analysis
- Design of Experiment
- Statistical Learning (Machine Learning)
- Spatial/Temporal Analysis

Computational Methods
- Numerical and stochastic Simulation
- Signal Processing
- Network Analysis

Optimization
- Computational Intelligence
- Natural Language Processing
- Image/Voice Processing
- Data Structure & Classical Algorithms

Artificial Intelligence

Key Levers
- University Partnerships
- O&G Industry Research
- Outside Industry Research
- Commercially Viable Algorithms
- Vendors
- IT

Data Management
Driving Value @ the Bit

@Bit + @Target

- Predicts bit location using physics + machine learning
- Calculates dogleg severity, build/turn rate, motor yield

@ Target Algorithm

- Determines optimum build & turn rate, sliding and rotating lengths to reach target point
- Minimizes loss of weight on bit, tortuosity, drilling time, dogleg severity

Max DLS limit = 11 degrees
Max DLS limit = 14 degrees
Max DLS limit = 24 degrees
Driving Value @ the Reservoir

Steam/Water/CO2

- Leverage field data and new data sources
- Optimize over larger areas
- Integrates w/existing workflow
- Significantly lower computational costs

Target=$100MM

Field decisions that optimize daily total field production

Reservoir & Operational Facilities

- Optimizer
- High Speed, Low Fidelity Reservoir Models
- Historical/field data to calibrate and quantify uncertainty

Maximize NPV honoring economic, operating, and well constraints by generating thousands of what-if scenarios
Driving Value @ the Well

Lift System Diagnostic/Optimization

- Leverages artificial intelligence and pattern recognition
- Proprietary deviated well algorithms based on mechanical engineering+applied mathematics

Upcoming Opportunities

- Text and image analytics of unstructured data to drive efficiencies with chemical treatments, safety, failure detection, etc.
- Survival and risk analysis to identify odds of failure in advance.
- Combine maintenance cost factors and risk of failures to optimize preventative maintenance.
Q&A