Analytics and Big Data in the Oil Field
Occidental Petroleum Corporation
May 9, 2017

Vicki Hollub
President and Chief Executive Officer

Jody Elliott
Senior Vice President, President, Oxy Oil and Gas

David Bowlby
Vice President, Data Management and Analytics
Forward-Looking Statements

Portions of this presentation contain forward-looking statements and involve risks and uncertainties that could materially affect expected results of operations, liquidity, cash flows and business prospects. Actual results may differ from anticipated results, sometimes materially, and reported results should not be considered an indication of future performance. Factors that could cause results to differ include, but are not limited to: global commodity pricing fluctuations; supply and demand considerations for Occidental’s products; higher-than-expected costs; the regulatory approval environment; not successfully completing, or any material delay of, field developments, expansion projects, capital expenditures, efficiency projects, acquisitions or dispositions; uncertainties about the estimated quantities of oil and natural gas reserves; lower-than-expected production from development projects or acquisitions; exploration risks; general economic slowdowns domestically or internationally; political conditions and events; liability under environmental regulations including remedial actions; litigation; disruption or interruption of production or manufacturing or facility damage due to accidents, chemical releases, labor unrest, weather, natural disasters, cyber attacks or insurgent activity; failure of risk management; changes in law or regulations; reorganization or restructuring of Occidental’s operations; or changes in tax rates. Words such as “estimate,” “project,” “predict,” “will,” “would,” “should,” “could,” “may,” “might,” “anticipate,” “plan,” “intend,” “believe,” “expect,” “aim,” “goal,” “target,” “objective,” “likely” or similar expressions that convey the prospective nature of events or outcomes generally indicate forward-looking statements. You should not place undue reliance on these forward-looking statements, which speak only as of the date of this presentation. Unless legally required, Occidental does not undertake any obligation to update any forward looking statements, as a result of new information, future events or otherwise. Material risks that may affect Occidental’s results of operations and financial position appear in Part I, Item 1A “Risk Factors” of the 2016 Form 10-K.

Use of non-GAAP Financial Information

This presentation includes non-GAAP financial measures. You can find the reconciliations to comparable GAAP financial measures on the “Investors” section of our website.
Agenda

• Introduction

• Oxy’s Journey to Digital Transformation

• Re-Imagined Oilfield (RIO) – What’s Next

• Driving Value Through Data Analytics
Differentiated Value-Based Approach

• More Oil
• Less Cost
• Better Inventory

Creating shareholder value over the long-term

• Culture of innovative technology and process
 – Subsurface characterization
 – Integrated development planning
 – Oxy Drilling Dynamics
 – Innovative facility designs
 – Long-term base management
 – Enhanced reservoir recovery

• Early adoption of external trends
 – Big data, analytics, and mobile workforce
 – Multi-lateral wells (SL2)
 – Crude export facility

• Innovative cost efficiency strategies
 – Logistic and Maintenance hubs
 – OBO portfolio and investments
Oxy Permian

- Largest operated position in the Permian
- Exceptional subsurface characterization
- Proven value based development approach
- Improving through unique technology advancements
- 68% 4Q16 oil production

Oxy Permian Business Overview

Resources – Unconventional Areas	1.4	5,150	124
Enhanced Oil Recovery Areas	1.1	19,310	145
Oxy Permian Total	2.5MM	24,460	269

Permian Basin Industry Production

- **10,000 mi² 3D seismic**
- **130,000 mi² 2D seismic**
- **~10,000 gross OBO wells**
- **250 OBO wells since 2015**

*Gross Oxy operated wells including producers and injectors, and idle wells.
**Source: Wood Mackenzie 2016 production, 3/2/17, company NWI% production rates, operators shown represent ~85% of Permian Basin daily production.
Our Journey to Digital Transformation

Production Optimization
- Institutionalized Processes and Tools
- Single reporting repository
- Focus on analysis and decision making

Consolidated ERP Systems
- Integration of operational, technical and financial data
- Global Supply Chain
- Single Chart of Accounts

Technical Data Management
- Technical Data Consolidation
- Global Well Naming Convention

Field Automation
- Standardized End Devices
- Segregation of Automation Network
- Secured Remote Access to Real time Data
- Process Historian

Next Generation Production Optimization
- Real time Data Historian
- Predictive Analytics
- Advanced Surveillance

- Smart Oilfield
- Edge Computing
- Internet of Things
- Cloud and Mobility
- Big Data and Analytics
- Cognitive Service and Machine Learning
- UAV
- Virtual Reality
A flexible system that flows, changes form in real time, and seeks the most natural path to its destination.

Oxy's Innovation Process

Current Innovation Pipeline Statistics and Results

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideas Submitted</td>
<td>679</td>
</tr>
<tr>
<td>Users</td>
<td>3788</td>
</tr>
<tr>
<td>Votes</td>
<td>8045</td>
</tr>
<tr>
<td>Comments</td>
<td>1398</td>
</tr>
<tr>
<td>Ideas in Functional Review</td>
<td>29</td>
</tr>
<tr>
<td>Ideas in Pilot Planning</td>
<td>14</td>
</tr>
<tr>
<td>Ideas Deferred</td>
<td>107</td>
</tr>
<tr>
<td>Ideas Pilots in Progress</td>
<td>28</td>
</tr>
<tr>
<td>Ideas Pilots Completed</td>
<td>4</td>
</tr>
</tbody>
</table>

(As of: 05.03.2017)
Data Science – Going Beyond Interesting

Data Collection & Profiling
- Data Preparation & Tagging
- Data Quality & Cleaning
- Data Forensics & Profiling

Insight & Recommendations
- Visualization
- Benchmarking
- Exploitation & Exploration

Computational Methods
- Numerical and stochastic Simulation
- Signal Processing
- Network Analysis

Optimization
- Computational Intelligence
- Natural Language Processing
- Image/Voice Processing
- Data Structure & Classical Algorithms

Artificial Intelligence
- Bayesian Analysis
- Survival Analysis
- Uncertainty Analysis
- Design of Experiment
- Statistical Learning (Machine Learning)
- Spatial/Temporal Analysis

Statistical Methods

Key Levers
- University Partnerships
- O&G Industry Research
- Outside Industry Research
- Commercially Viable Algorithms
- Vendors
- IT

Data Management
Driving Value @ the Bit

@Bit + @Target

• $325K avg. per rig savings

• Vendor performance metrics
• Increase in Rate of Penetration
• “Problem Well” avoidance
• Optimal path determination (staying in producing zone)

@ Bit Algorithm

• Predicts bit location using physics + machine learning
• Calculates dogleg severity, build/turn rate, motor yield

@ Target Algorithm

• Determines optimum build & turn rate, sliding and rotating lengths to reach target point
• Minimizes loss of weight on bit, tortuosity, drilling time, dogleg severity
High Speed, Low Fidelity Reservoir Models

Historical/field data to calibrate and quantify uncertainty

Optimizer

Maximize NPV honoring economic, operating, and well constraints by generating thousands of what-if scenarios

Reservoir & Operational Facilities

Target=$100MM

Field decisions that optimize daily total field production

Steam/Water/CO2

• Leverage field data and new data sources
• Optimize over larger areas
• Integrates with existing workflow
• Significantly lower computational costs

Driving Value @ the Reservoir

Temp, Press
Injection
Production
Injection Well Data
Production Well Data
Driving Value @ the Well

- Increase run life
- Earlier detection of failures
- Improve staff efficiency, quality
- Industry leading capabilities into Oxy’s proprietary lift platform (Oxylift)

Lift System Diagnostic/Optimization

- Leverages artificial intelligence and pattern recognition
- Proprietary deviated well algorithms based on mechanical engineering+applied mathematics

Upcoming Opportunities

- Text and image analytics of unstructured data to drive efficiencies with chemical treatments, safety, failure detection, etc.
- Survival and risk analysis to identify odds of failure in advance.
- Combine maintenance cost factors and risk of failures to optimize preventative maintenance.
Driving Value
@ Field Development

Multivariate Modelling

• Predictive, interactive multivariate statistical model that predicts geologic sweet spot areas and compares completion practices and cost factors

• Driven by strong collaboration with geologists, petrophysicists, geophysicists, operations, etc.

• Introducing seismic, additional well control and fluid properties
The Possibilities Are Endless...

Exploitation & Appraisal
- Exploration & Appraisal
- Field Development
- Drilling & Completion
- Production
- Refining & Distribution
- Workforce Management
- Risk Management
- Reservoir Characterization
- Lease Management Analytics
- Production Forecasting
- Production HES
- Production Allocation & Monitoring
- Job Performance Monitoring
- Asset Maintenance
- Contract Optimization
- Supply Chain Optimization
- Pipeline Inspection
- Route & Fleet Optimization
- Inventory Optimization
- Identifying Organization Issues
- Identifying Key Players & Future Leaders
- Equipment Loss & Failure
- Subsurface Dysfunction Detection & Prevention
- Resource Risk Management
- Drilling Trajectory Optimization
- Minimize Environmental Risk
- Optimization Cost vs Productivity
- Optimization of required Workforce
- Well Profiling
- Production Profiling
- Drilling & Completion
- Capital Optimization
- Reservoir Characterization
- Prediction of Supply Requirements
- Where to Drill
- Risk Management

Digital Foundational Capabilities
- Predictive Analysis
- Internet of Things
- Cloud Computing & Mobility
- Cognitive Services & Machine Learning
- Big Data and Analytics
- Drones
- Robotics
- Virtual & Augmented Reality
- Edge Computing